Software

snAPI free

Fast, Intuitive, and Versatile Python Wrapper

  • Download from GitHub for free
  • Benefit from seamless communication, configuration, and data handling with PicoQuant's TCSPC devices
  • Access, manipulate, and process raw data stream, or read from file
  • Efficiently handle large photon counts with real-time analysis
  • Build your own algorithms, implement complex calculations, and develop tailored data processing pipelines directly in Python

snAPI Pyhton Wrapper: screenshot of codeSnappy new API (snAPI) is a powerful Python wrapper which enables seamless communication and configuration with PicoQuant’s Time-Correlated Single Photon Counting (TCSPC) and Time Tagging Electronics. It harnesses the advantages of C++ for optimal speed and performance and bridges the gap between the high-speed capabilities of PicoQuant’s TCSPC devices and the ease of use and versatility of Python.

snAPI provides a high-level interface to the underlying C++ library and enables users to tap into the full potential of PicoQuant’s TCSPC devices while maintaining the flexibility and versatility of the Python programming language. The low-level control offered by C++ ensures smooth and efficient data processing, enabling efficient handling of large photon counts and their real-time analysis. Additionally, snAPI introduces another dimension of flexibility by providing the option to access unfolded data from the TCSPC devices, or conveniently read from PTU files. This opens a whole new realm of possibilities, allowing researchers, developers, and scientists to delve deeper into their data and extract valuable insights.

By leveraging the power of Python users can build their own algorithms, implement complex calculations, and develop tailored data processing pipelines for analysis. See features for more information about the abilities of snAPI.

To get started users just need a PicoQuant TCSPC device, its Library/DLL, Python, and snAPI.

 

 

Supported Time Tagging Units

MultiHarp 150

High-Throughput Multichannel Event Timer & TCSPC Unit

MultiHarp 150 - High-Throughput Multichannel Event Timer & TCSPC Unit


MultiHarp 160

Scalable Multichannel Event Timer & TCSPC Unit

MultiHarp160 - Scalable Multichannel Event Timer and TCSPC Unit


PicoHarp 330 NEW

Precise and Versatile Event Timer & TCSPC Unit

PicoHarp 330 - Precise and Versatile Event Timer & TCSPC Unit


HydraHarp 400

Multichannel Picosecond Event Timer & TCSPC Module

HydraHarp 400 - multichannel time tagging module

TimeHarp 260

TCSPC and MCS Board with PCIe Interface

To use snAPI with the TimeHarp 260, optional drivers are needed for snAPI.

TimeHarp 260 - time tagging and TCSPC board with PCIe interface

With snAPI, users can make use of advanced measurement classes such as timetrace, histogram, unfold, raw, and correlation (e.g, FCS, g2), without worrying about the intricacies of device handling. The measurement classes can be sequentially combined with data manipulators (e.g., coincidence, herald, merge, delay) to provide maximum flexibility in analysis.

 

Example Codes

Measurement class “TimeTrace”

Example Code which shows the commands to use the measurement class “TimeTrace” for TimeTraces and the resulting plot.

Example Code which shows the commands to use the measurement class TimeTrace or TimeTraces and the resulting plot

 

Measurement class “Histogram”

Example Code which shows the commands to use the measurement class “Histogram” for histogramming and the resulting plot.

Example Code which shows the commands to use the measurement class Histogram for histogramming and the resulting plot

 

Measurement class “Correlation”

Example Code which shows the commands to use the measurement class “Correlation” for g(2) correlation and the resulting plot.

Example Code which shows the commands to use the measurement class Correlation for g(2) correlation and the resulting plot

 

Measurement class “Correlation” for FCS

Example Code which shows the commands to use the measurement class “Correlation” for FCS and the resulting plot.

Example Code which shows the commands to use the measurement class Correlation for FCS and the resulting plot

 

Measurement class “Unfold”

Example Code which shows the commands to use the measurement class "Unfold".

Example Code which shows the commands to use the measurement class Unfold.

 

Manipulator “Herald”

Example Code which shows the commands to use the manipulator “Herald” and the resulting plot.

Example Code which shows the commands to use the manipulator Herald and the resulting plot

 

Device configuration

Example Code which shows commands for device configuration. Alternatively, if data is taken from a file the PTU-Header can be read instead (see left inset).

Example Code which shows commands for device configuration

 

Possible applications


All Information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications and external appearances are subject to change without notice.