header image quantum optics

Quantum Optics

Quantum Teleportation

A qubit transmitted from one location to another

Quantum teleportation is closely related to entanglement of quantum systems. It may be defined as a process by which a qubit (the basic unit of quantum information) can be transmitted from one location to another, without the qubit actually being transmitted through space. It is useful for quantum information processing and quantum communication.  As with entanglement, it is applicable to simple and more complex quantum systems such as atoms and molecules. Recent research demonstrated quantum teleportation between atomic systems over long distances.

Quantum teleportation experiments generally have several prerequisites:

  1. means of generating an entangled EPR pair of qubits as well as a qubit that is to be teleported
  2. a conventional communication channel capable of transmitting two classical bits
  3. means of performing a Bell measurement on the EPR pair, and manipulating the quantum state of one of the pair

The teleportation success is then typically analysed via coincidence correlation methods. For that purpose, the photons emitted by the systems are split using, e.g., a 50 / 50 beamsplitter or a polarization splitter and send onto two single photon sensitive detectors. The output of these detectors is then fed into a time tagging unit with high temporal resolution to measure the coincidence.
 

Time-tagging Units

MultiHarp 150 - High-Throughput Multichannel Event Timer & TCSPC UnitMultiHarp 150

High-Throughput Multichannel Event Timer & TCSPC Unit

  • 4, 8, or 16 independent input channels and common sync channel (up to 1.2 GHz)
  • High sustained data throughput (80 Mcps in time tagging mode, 180 Mcps in histogramming mode)
  • Record-breaking dead time (650 ps) per channel
  • No dead time across channels

HydraHarp 400 - Multichannel Picosecond Event Timer and TCSPC ModuleHydraHarp 400

Multichannel Picosecond Event Timer & TCSPC Module

  • Up to 8 independent input channels and common synch channel (up to 150 MHz)
  • Time channel width of 1 ps
  • Time tagging with sustained count rates up to 40 Mcps
  • USB 3.0 connection

PicoHarp 300 - Stand-alone TCSPC Module with USB InterfacePicoHarp 300

Stand-alone Dual-Channel Picosecond Event Timer

  • Two identical synchronized but independent input channels
  • Time channel width of 4 ps
  • Time tagging with sustained count rates up to 5 Mcps
  • USB 2.0 connection

TimeHarp 260 - TCSPC and MCS board with PCIe interfaceTimeHarp 260

TCSPC and MCS board with PCIe interface

  • One or two independent input channels and common synch channel (up to 84 MHz)
  • Two models with either 25 ps (PICO model) or 1 ns (NANO model) base resolution
  • Ultra short dead time (< 25 ns for PICO model, < 1 ns for NANO model)
  • PCIe interface

Single Photon Detectors

PDM SPAD - single photon sensitive detectorPDM Series

Single Photon Avalanche Diodes

  • Timing resolution down to < 50 ps (FWHM)
  • Detection efficiency up to 49%
  • Different active areas: 20, 50, and 100 µm
  • Ultra stable at high count rates

Software

QuCoaQuCoa - Quantum Correlation Analysis Software

Quantum Correlation Analysis Software

  • Antibunching (g(2)) measurements including fitting to several models
  • Coincidence counting / event filtering, using AND, OR, NOT operators
  • Preview of antibunching curve and correlation data during measurement
  • Remote control via TCP/IP Interface

Latest 10 publications related to Quantum Teleportation

The following list is an extract of 10 recent publications from our bibliography that either bear reference or are releated to this application and our products in some way. Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.

How can we help you?