header image scientific
PicoQuant - It's about time

Bibliography

Our instruments are used by top reserchers world wide, including recent nobel prize winners, such as W.E. Moerner and S.W. Hell. Our bibliography is a collection of papers that mention explicitly PicoQuant or at least one of our product's name. Searching or browsing through the bibliography allows to find out which laboratories use PicoQuant devices and what type of applications have been reported so far.

The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime). Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices. Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.

more..

Searching for

6227 results found.


Probing viscosity of Co-polymer hydrogel and HeLa cell using fluorescent gold nanoclusters: fluorescence correlation spectroscopy and anisotropy decay

Chakraborty S., Nandi S., Bhattacharyya K., Mukherjee S.
ChemPhysChem, Vol.021, p.406-414 (2020)

Reference to: MicroTime 200, PicoHarp 300
Related to: FCS


Morphology control and phase transformation of ZIS/TiO2 into CdSe(en)0.5/CIS/TiO2 photoanode for enhanced solar hydrogen generation

Bae H.-S., Patil R.P., Chae W.-S., Ryu J., Mahadik M.A., Jang J.S.
Chemical Engineering Journal, Vol.385, 123871 (2020)

Reference to: MicroTime 200


Energy transfer between CNT surface and -ReCO)3(phen)+* pendants grafted to P4VP in nanohybrid shish-kebob-like structures

Maisuls I., Ostendorp S., Wilde G., Parola A.J., Strassert C.A., Wolcan E.
The Journal of Physical Chemistry C, Vol.124, p.1238-1248 (2020)

Reference to: FluoTime 300, PicoHarp 300


Mapping multiple distances in a multidomain protein for the indentification of folding intermediates

Cerminara M., Schöne A., Ritter I., Gabba M., Fitter J.
Biophysical Journal, Vol.011, p.688-697 (2020)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400, SPADs
Related to: FRET


The synthesis of MAPbBr3 nanoplatelets with long-term stability and high photoluminescence quantum yield through controlling the synthetic temperature and dilution treatment

Huang S., Zhang T., Jiang C., Luo C., Lin H., Chen Y., Qi R., Yu W., Peng H.
Journal of Luminescence, Vol.220, 116984 (2020)

Reference to: PicoHarp 300


Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1PbnI3n+1

Hua Y., Hong D., Wan S., Lei Y., Xie M., Yang W., Du Y., Tian Y.
Journal of Luminescence, Vol.208, 116981 (2020)

Reference to: PicoHarp 300


Fluoride-calcium (F-Ca) melt in rhyolitic magma: evidence from fluorite-rich rhyolites of the Nyalga Basin, Central Mongolia

Peretyazhko I.S., Savina E.A.
Lithos, Vol.354-355, 105348 (2020)

Reference to: MicroTime 200


Plasma membrane asymmetry of lipid organization: fluorescence lifetime microscopy and correlation spectroscopy analysis

Gupta A., Korte T., Herrmann A., Wohland T.
Journal of Lipid Research, Vol.061, p.252-266 (2020)

Reference to: FluoTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), FluoFit
Related to: FLIM


Improved fluorescence and brightness of near-infrared and shortwave infrared emitting polymer dots for bioimaging applications

Piwoński H., Li W., Wang Y., Michinobu T., Habuchi S.
ACS Applied Polymer Materials, Vol.002, p.569-577 (2020)

Reference to: HydraHarp 400, SymPhoTime


Photophysical properties of 2-Phenylindole in poly (vinyl alcohol) film at room temperature. Enhanced phosphorescence anisotropy with direct triplet state excitation

Gryczynski Z., Kimball J., Fudala R., Chavez J.L., Ceresa L., Szabelski M., Borejdo J., Gryczynski I.
Methods and Applications in Fluorescence, Vol.008, 014008 (2020)

Reference to: FluoTime 300


ZnO - Nanorod processed PC-SET as the light-harvesting model for plasmontronic fluorescence sensor

Gupta A.K., Hsu C.-H., Purwidyantri A., Prabowo B.A., Chiu K.-P., Chen C.-H., Tian Y.-C., Lai C.-S.
Sensors and Actuators B: Chemical, Vol.307, 127597 (2020)

Reference to: FluoFit


Room-temperature single photon emitters in cubic boron nitride nanocrystals

López-Morales G.I., Almanakly A., Satapathy S., Proscia N.V., Jayakumar H., Khabashesku V.N., Ajayan P.M., Meriles C.A., Menon V.M.
Optical Materials Express Vol.010, p. 843-849 (2020)

Reference to: PicoHarp 300


Electrical and chemical tuning of exciton lifetime in monolayer MoS2 for field-effect transistors

Pradeepa H L, Mondal P., Bid A., Basu J.K.
AS Applied Nano Materials, Vol.003, p.641-647 (2020)

Reference to: MicroTime 200


Enhanced fluorescence quenching rate of Coumarin 102 in stimulated emission depletion

Zhao W., Zhao Wei, Sharma N., Zhang C., Feng X., Qin H., Kuang C.,Wang K.
Journal of Luminescence, Vol.220, 116982 (2020)

Reference to: SPADs


Ocular half-life of intravitreal biologics in humans and other species: meta-analysis and model-based prediction

Caruso A., Futh M., Alvarez-Sanchez R., Belli S., Diack C., Maass K.F., Schwab D., Kettenberger H., Mazer N.A.
molecular pharmaceutics, Vol.017, p.695-709 (2020)

Reference to: PicoHarp 300


Rapid aerobic visible-light-driven photo-reduction of nitrobenzene

Wu J.-H., Zhang F.
Science of The Total Environment, Vol.710, 136322 (2020)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Plasma-treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride

Jiang K., Zhu L., Wang Z., Liu K., Li H., Hu J., Pan H., Fu J., Zhang N., Qiu X., Liu M.
Applied Surface Science, Vol.508, 145173 (2020)

Reference to: TimeHarp 100/200


Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis

Ferreira M.A., da Silva G.T.S.T., Lopes O.F., Matelaro V.R., Ribeiro C., Pires M.J.M., Malagutti A.R., Avansi Jr. W., Mourãoa H.A.J.L.
Materials Science in Semiconductor Processing, Vol.108, 104887 (2020)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300


Photodegradation of 4-chlorophenol using Zn and In phthalocyanines substituted with pyrrole without hetero atoms linkers and supported on polyacrylonitrile electrospun fibres

Jones B., Britton J., Mafukidze D., Nyokong T.
Polyhedron, Vol.178, 114329 (2020)

Reference to: FluoTime 300, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), FluoFit


Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput, and fiber optic remote synchronization

Wahl M., Roehlicke T., Kulisch S., Rohilla S., Kraemer B., Hocke A.C.
Review of Scientific Instruments, Vol.091, 013108 (2020)

Reference to: MicroTime 200, FluoTime 300, MultiHarp 150, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PMA Series, SymPhoTime


The bright X-ray stimulated luminescence of HfO2 nanocrystals activated by Ti ions

Villa I., Moretti F.,Fasoli M., Rossi A., Hattendorf B., Dujardin C., Niederberger M., Vedda A., Lauria A.
Advanced Optical Materials, Vol.008, 1901348 (2020)

Reference to: PicoHarp 300


A carbon-dot sensing probe for screening of date rape drugs: nitro-containing Benzodiazepines

Yen Y.-T., Lin Y.-S., Chen T.-H., Chyueh S.-C., Chang H.-T.
Sensors and Actuators B: Chemical, Vol.305, 127441 (2020)

Reference to: TimeHarp 100/200


Electrochemically controlled CdS@CdSe nanoparticles on ITO@TiO2 dual core–shell nanowires for enhanced photoelectrochemical hydrogen production

Cho Y., Park M., Kim J.K., Kim S., Jung H.S., Park J.H.
Applied Surface Science, Vol.505, 144569 (2020)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts

Ivosev V., Jimenez-Sanchez G., Porcel E., Yang X., González Vargas C.R., Haidar D.A., Bazzi R., Stefancikova L., Roux S., Lacombe S.
Nanotechnology, Vol.031, 135102 (2020)

Reference to: SymPhoTime


A nanoscale view of amyloid photodynamic damage

Bondia P., Torra J., Tone C.M., Sawazaki T., del Valle A., Sot B., Nonell S., Kanai M., Sohma Y., Flors C.
Journal of the American Chemical Society, Vol.142, p.922-930 (2020)

Reference to: FluoTime 200, NanoHarp 250