header image scientific
PicoQuant - It's about time


Our instruments are used by top reserchers world wide, including recent nobel prize winners, such as W.E. Moerner and S.W. Hell. Our bibliography is a collection of papers that mention explicitly PicoQuant or at least one of our product's name. Searching or browsing through the bibliography allows to find out which laboratories use PicoQuant devices and what type of applications have been reported so far.

The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime). Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices. Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.


Searching for

5479 results found.

Thirty-fold photoluminescence enhancement induced by secondary ligands in monolayer protected silver clusters

Khatun E., Ghosh A., Chakraborty P., Singh P., Bodiuzzaman M., Ganesan P., Natarajan G., Ghosh J., Pal S.K., Pradeep T.
Nanoscale (2018)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)

Manipulating the quantum coherence of optically trapped nanodiamonds

Russell L.W., Ralph S.G., Wittick K., Tetienne J.-P., Simpson D.A., Reece P.J.
ACS Photonics, Just Accepted Manuscript (2018)

Reference to: SPADs

Observation of the linewidth broadening of single spins in diamond nanoparticles in aqueous fluid and its relation to the rotational Brownian motion

Fujiwara M., Shikano Y., Tsukahara R., Shikata S., Hshimoto H.
Scientific Reports, Vol.008, 14773 (2018)

Reference to: TimeHarp 260

Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity

Sadana S., Ghosh D., Joarder K., Naga Lakshmi A., Sanders B.C., Sinha U.
Quantum Physics (2018)

Reference to: SPADs

Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons

Leng H., Szychowski B., Daniel M.-C., Pelton M.
Nature Communications, Vol.009, 4012 (2018)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300

Effect of gold nanoparticles shape and size on the photophysicochemical behaviour of symmetric and asymmetric zinc phthalocyanines

Dube E., Nyokong T.
Journal of Luminescence (2018)

Reference to: FluoTime 300, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)

Stacking-induced fluorescence increase reveals allosteric interactions through DNA

Morten M.J., Lopez S.G., Steinmark I.E., Rafferty A., Magennis S.W.
Nucleic Acid Research (2018)

Reference to: FluoTime 300, FluoFit

DNA local flexibility dependent assembly of phase separated liquid droplets

Shakya A., King J.T.
Biophysical Journal (2018)

Reference to: PicoHarp 300, SymPhoTime

Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study

Hellenkamp B., Schmid S., Doroshenko O., Opanasyuk O., Kühnemuth R., Rezaei Adariani S., Ambrose B., Aznauryan M., Barth A., Birkedal V., Bowen M.E., Chen H., Cordes T., Eilert T., Fijen C., Gebhardt C., Götz M., Gouridis G., Gratton E., Ha T., Hao P., Hanke C.A., Hartmann A., Hendrix J., Hildebrandt L.L., Hirschfeld V., Hohlbein J., Hua B., Hübner C.G., Kallis E., Kapanidis A.N., Kim J.Y., Krainer G., Lamb D.C., Lee N.K., Lemke E.A., Levesque B., Levitus M., McCann J.J., Naredi-Rainer N., Nettels D., Ngo T., Qiu R., Robb N.C., Röcker C., Sanabria H., Schlierf M., Schröder T., Schuler B., Seidel H., Streit L., Thurn J., Tinnefeld P., Tyagi S., Vandenberk N., Vera A.M., Weninger K.R., Wünsch B., Yanez-Orozco I.S., Michaelis J., Seidel C.A.M., Craggs T.D., Hugel T.
Nature Methods, Vol.009, p.669-676 (2018)

Reference to: MicroTime 200, FluoTime 300, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400, LSM Upgrade Kit
Related to: FRET, Single Molecule Detection

A fluorescent membrane tension probe

Colom A., Derivery E., Soleimanpour A., Tomba C., Molin M.D., Sakai N., González-Gaitán M., Matile S., Roux A.
Nature Chemistry (2018)

Reference to: LSM Upgrade Kit
Related to: FLIM

Quantifying protein oligomerization in living cells: a systematic comparison of fluorescent proteins

Dunsing V., Luckner M., Zühlke B., Petazzi R., Herrmann A., Chiantia S.
bioRxiv, (preprint) (2018)

Reference to: LSM Upgrade Kit, SPADs, SymPhoTime

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

Kurochkina M.A., Konshina E.A., Khmelevskaia D.
Beilstein Journal of Nanotechnology, Vol.009, p.1544-1549 (2018)

Reference to: MicroTime 100

Optical properties of pseudoisocyanine molecular clusters embedded in a nanoporous alumina

Anton A. Starovoytov A.A., Lepeshova O.I., Alexeeva N.O., Solovyev V.G., Razumova Y.A., Reznik I.A., Baranov M.A.
Proceedings of SPIE, Nanophotonics VII, 1067212 (2018)

Reference to: MicroTime 100

A highly luminescent porous metamaterial based on a mixture of gold and alloyed semiconductor nanoparticles

Kormilina T.K., Stepanidenko E.A., Cherevkov S.A., Dubavik A., Baranov M.A., Federov A.V., Baranov A.V., Gun'ko Y.K., Ushakova E.V.
Journal of Materials Chemistry C, Vol.006, p.5278-5285 (2018)

Reference to: MicroTime 100

Purcell effect in active diamond nanoantennas

Zalogina A.S., Savelev R.S., Ushakova E.V., Zograf G.P., Komissarenko F.E., Milichko V.A., Makarov S.V., Zuev D.A., Shadrivov I.V.
Nanoscale, Vol.010, p.8721-8727 (2018)

Reference to: MicroTime 100

A 256×256 45/65nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6dB interference suppression

Ximenes A.R., Padmanabhan P., Lee M.-J., Yamashita Y., Yaung D.N., Charbon E.
IEEE International Solid - State Circuits Conference - (ISSCC) (2018)

Reference to: SPADs, VisUV
Related to: LIDAR or ranging

Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell

Rana T.R., Kim S.Y., Kim J.H.
Current Applied Physics, Vol.018, p.663-666 (2018)

Reference to: MicroTime 100

Quantum dots based on Indium Phosphide (InP): the effect of chemical modifications of the organic shell on interaction with cultured cells of various origins

Litvinov I.K. , Belyaeva T.N., Salova A.V., Aksenov N.D., Leontieva E.A., Orlova A.O., Kornilova E.S.
Cell and Tissue Biology, Vol.012, p.135-145 (2018)

Reference to: MicroTime 100

Label-free monitoring of ambient oxygenation and redox conditions using the photodynamics of flavin compounds and transient state (TRAST) spectroscopy

Tornmalm J., Widengren J.
Methods, Vol.140-141, p.178-187 (2018)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400, SPADs, SymPhoTime

Fluorescence lifetime correlation spectroscopy: basics and applications

Ghosh A., Karedla N., Thiele J.C., Gregor I., Enderlein J.
Methods, Vol.140-141, p.32-39 (2018)

Reference to: MicroTime 200, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), HydraHarp 400

Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer

Lerner E., Cordes T., Ingargiola A., Alhadid Y., Chung S.Y.
Science, Vol.359, eaan1133 (2018)

Reference to: MicroTime 200
Related to: FRET, Single Molecule Detection

Widefield high frame rate single-photon SPAD imagers for SPIM-FCS

Buchholz J., Krieger J., Bruschini C., Burri S., Ardelean A., Charbon E., Langowski J.
Biophysical Journal, Vol.114, p.2455-2464 (2018)

Reference to: SPADs
Related to: FCS

Thin films of poly[(9,9-dioctylfluorene)-co-thiophene] deposited on ITO by the Langmuir–Schaefer and Langmuir–Blodgett techniques

Bento D.C., Barbosa C.G., Roncaselli L.K.M., Renzi W., Duarte J.L., de Almeida Olivati C., Péres L.O., de Santana H.
Journal of Materials Science: Materials in Electronics, Vol.028, p.3875-3883 (2017)

Reference to: FluoTime 200

Using a redox-sensitive phosphorescent probe for optical evaluation of an intracellular redox environment

Liu S., Zhou N., Chen Z., Wei H., Zhu Y., Guo S., Zhao Q.
Optics Letters, Vol.042, p.13-16 (2017)

Reference to: LSM Upgrade Kit, SymPhoTime
Related to: FLIM

The binuclear dual emitter [Br(CO)3Re(PN)(NP)Re(CO)3Br] (PN): 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine, a new bridging P,N-bidentate ligand resulting from the ring opening of tetrahydrofuran.

Saldías M., Manzur J., Palacios R.E., Gómez M.L., Fuente J., Günther G., Pizarro N., Vega A.
Dalton Transactions, Vol.046, p.1567-1576 (2017)

Reference to: FluoTime 300