header image scientific

Bibliography

Our instruments are used by top reserchers world wide, including recent nobel prize winners, such as W.E. Moerner and S.W. Hell. Our bibliography is a collection of papers that mention explicitly PicoQuant or at least one of our product's name. Searching or browsing through the bibliography allows to find out which laboratories use PicoQuant devices and what type of applications have been reported so far.

The bibliography contains articles mentioning explicitly PicoQuant or at least one of our product's name (e.g. MicroTime). Most of the references can be found easily by full-text searches on the internet. However, some papers cite us only indirectly, sometimes not at all. Such publications are included only if the use of a PicoQuant product is known, for example, based on communication with the author(s). There are certainly many more articles reporting results obtained using PicoQuant devices. Unfortunately, such papers are often hidden for us. Please help completing this list.
Do you miss your publication? If yes, we will be happy to include it in our bibliography. Please send an e-mail to info@picoquant.com containing the appropriate citation. Thank you very much in advance for your kind co-operation.

more..


Searching for

8582 results found.


Synthesis, shemical structure, and ground- and excited-state spectral characteristics of (Porphyrinato)(chloro)indium(III) and its complexes with C60 and pyridyl-substituted Fullero[60]pyrrolidine

Ovchenkova E.N., Bichan N.G., Lomova T.N.,
Russian Journal Of Inorganic Chemistry, Vol.068, p.1562-1570 (2023)

Reference to: FluoTime 300


Memlumor: a luminescent memory device for photonic neuromorphic computing

Maruchenko A., Kumar J., Kiligaridis A., Rao S.M., Tatarinov D., Matchenya I., Sapozhnikova E., Ji R., Telschow O., Brunner J., Pushkarev A., Vaynzof Y., Scheblykin I.G.
Optics (2023)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), PicoHarp 300, PMA Series


Crystals of 4,7-Di-2-thienyl-2,1,3-benzothiadiazole and its derivative with terminal trimethylsilyl substituents: synthesis, growth, structure, and optical-fluorescent properties

Postnikov V.A., Yurasik G.A., Kulishov A.A., Sorokin T.A., Lyasnikova M.S., Sorokina N.I., Skorotetcky M.S., Popova V.V., Levkov L.L., Borshchev O.V., Svidchenko E.A., Surin N.M., Ponomarenko S.A.
Crystals, Vol.013, 1697 (2023)

Reference to: FluoTime 300, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)


Water-soluble iridium (III) complexes as multicolor probes for one-photon, two-photon and fluorescence lifetime imaging

Ma Y., Zhang D., Lv W., Zhao Q., Wong W.-Y.
Journal of Organometallic Chemistry, Vol.992, 122697 (2023)

Reference to: SymPhoTime


Room temperature phosphorescence of 5,6-benzoquinoline

Chavez J., Ceresa L., Kitchner E., Pham D., Gryczynski Z., Gryczynski I.
Methods and Applications in Fluorescence, Vol.011, 025003 (2023)

Reference to: FluoTime 300


The CdS/CaTiO3 cubic core-shell composite towards enhanced photocatalytic hydrogen evolution and photodegradation

Yang H., Li X., Zhao T., Peng Q., Yang W., Cao J., Zheng Y., Li C., Pan J.
International Journal of Hydrogen Energy, Vol.048, p.21788-21798 (2023)

Reference to: FluoTime 300


Response of coccomyxa cimbrica sp.nov. to increasing doses of Cu(II) as a function of time: comparison between exposure in a microfluidic device or with standard protocols

Speghini R., Buscato C., Marcato S., Fortunati I., Baldan B., Ferrante C.
Sensors, Vol.013, 417 (2023)

Reference to: PicoHarp 300, SymPhoTime


Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes

Sun J., Ren Z., Wang Z., Wang H., Wu D., Sun X.W., Choy W.C.H.
Advanced Optical Materials, Vol.011, 2202721 (2023)

Reference to: FluoTime 300, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)
Related to: TRPL


Reversible facet reconstruction of CdSe/CdS core/shell nanocrystals by facet-ligand pairing

Lei H., Li T., Li J., Zhu J., Zhang H., Qin H., Kong X., Wang L., Peng X.
Journal of American Chemical Society, Vol.145, p.6798-6810 (2023)

Reference to: SPADs


A2Bn-1PbnI3n+1 (A = BA, PEA; B = MA, n = 1, 2): engineering quantum-well crystals for high density and fast scintillators

Sheikh A.K., Kowal D., Mahyuddin M.H., Cala R., Auffray E., Witkowski M.E., Makowski M., Drozdowski W., Wang H., Dujardin C-. Cortecchia D., Birowosuto M.D.
The Journal of Physical Chemisttry C, Vol.127, p.10737-10747 (2023)

Reference to: HydraHarp 400


Non-line-of-sight imaging based on Archimedean spiral scanning

Zhang M., Shi Y., Sheng W., Liu J., Li J., Wei Y., Wang B., Zhang D. Liu Y.
Optics Communications, Vol.537, 129450 (2023)

Reference to: HydraHarp 400, SPADs


Designed multi-layer buffer for high-performance semitransparent wide-bandgap perovskite solar cells

Lou J., Feng J., Cao Y., Liu Y., Qin Y., Liu S.
Materials Advances, Vol.004, p.1777-1784 (2023)

Reference to: FluoTime 300
Related to: TRPL


A gradient-gated SPAD array for non-line-of-sight imaging

Zhao J., Gramuglia F., Keshavarzian P., Toh E.-H., Tng M., Lim L., Dhulla V., Quek E., Lee M.-J., Charbon E.,
IEEE Journal of Selected Topics in Quantum Electronics ( Early Access ), p.1-10 (2023)

Reference to: MultiHarp 150, SPADs, VisIR
Related to: LIDAR or ranging


Shunt mitigation toward efficient large-area perovskite-silicon tandem cells

Yang G., Yu Z.J., Wang M., Shi Z., Ni Z., Jiao H., Fei C., Wood A., Alasfour A., Chen B., Holman Z.C., Huang J.
Cell Reports Physical Science, Vol.004, 101628 (2023)

Reference to: MicroTime 100
Related to: FLIM


FRET-amplified singlet oxygen generation by nanocomposites comprising ternary AgInS2/ZnS quantum dots and molecular photosensitizers

Oskolkova T.O., Matiushkina A.A., Borodina L.N., Smirnova E.S., Dadadzhanova A.I., Sewid F.A., Veniamonov A.V., Moiseeva E.O., Orlova A.O.
Optics (2023)

Reference to: MicroTime 100
Related to: FRET


An interlayer of ultrasmall N-rich carbon dots for optimization of SnO2/CsFAPbI3 interface

Margaryan I.V., Vedernikova A.A., Parfenov P.S., Baranov M.A., Danilov D.V., Koroleva A.V., Zhizhin E.V., Cherevkov S.A., Zhang X., Ushakova E.V., Litvin A.P.
Photonics, Vol.010, 379 (2023)

Reference to: MicroTime 100


Enhancing electrocatalitic performance and stability: a novel prussian blue-graphene quantum dot nanoarchitecture for H2O2 reduction

Lim H.C., Cho Y., Han D., Kim T.H.
Applied Surface Science, Vol.646, 158920 (2023)

Reference to: MultiHarp 150, Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), SPADs, MicroTime 100
Related to: FLIM


Energy-level engineering of carbon dots through a post-synthetic treatment with acids and amines

Ushakova E.V., Rogach A.L., Kosolapova K.D., Koroleva A.V., Arefina I.A., Miruschenko M.D., Cherevkov S.A., Spiridonov I.G., Zhizhin E.V.,
Nanoscale, Vol.015, p.8845-8853 (2023)

Reference to: MicroTime 100


Self-assembly of hydrogen-bonded organic crystals on arbitrary surfaces for efficient amplified spontaneous emission

Kenzhebayeva Y., Gorbunova I., Dolgopolov A., Dmitriev M.V., Atabaev T.S., Stepanidenko E.A., Efimova A.S., Novikov A.S., Shipilovskikh S., Milichko V.A.
Advanced Photonic Research, early view, 2300173 (2023)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series), MicroTime 100, SymPhoTime


Shear-triggered release of lipid nanoparticles from tissue-mimetic hydrogels

Karaz S., Akay G., Karaoglu I.C., Han M., Nizamoglu S., Kizilel S., Senses E.
Macromolecular Rapid Communications, Vol.044, 2300090 (2023)

Reference to: HydraHarp 400, MicroTime 100, SymPhoTime
Related to: FLIM


Design optimization of bifacial perovskite minimodules for improved efficiency and stability

Gu H., Fei C., Yang G., Chen B., Uddin M.A., Zhang H., Ni Z., Jiao H., Xu W., Yan Z., Huang H.
Nature Energy, Vol.008, p.675-684 (2023)

Reference to: MicroTime 100
Related to: TRPL


Amphiphilic acetylacetone-based carbon dots

Cherevkov S., Stepanidenko E.A., Miruschenko M., Zverkov A., Margaryan I., Spiridonov I., Danilov D., Koroleva A., Zhizhin E., Baidakova M., Sokolov R., Sandzhieva M., Ushakova E., Rogach A.
ChemRxiv, working paper (2023)

Reference to: MicroTime 100


YAG: CE nanophosphors synthesized by the polymer-salt method for white leds with isomorphic substitution of Yttrium by Gadolinium

Bulyga D.V., Gavrilova D.A., Evstropiev S.K., Arefina I.A., Myagkih M.K., Shelemanov A.A.
Crystals, Vol.013, 1156 (2023)

Reference to: MicroTime 100


Kilogram-scale fabrication of TiO2 nanoparticles modified with carbon dots with enhanced visible-light photocatalytic activity

Xu J., Zhang J., Tao F., Liang P., Zhang P.
Nanoscale Advances, Vol.005, p.2226-2237 (2023)

Reference to: FluoTime 300


Multiplex gRNAs synergically enhance detection of SARS-CoV-2 by CRISPR-Cas12a

Morales-Moreno M.D., Valdés-Galindo E.G., Reza M.M., Fiordelisio T., Peon J., Hernandez-Garcia A.
The CRISPR Journal, Vol.006, 116-126 (2023)

Reference to: Pulsed Diode Lasers (PDL Series, LDH-Series, LDH-FA Series)