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Quantification of Molecules
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The quest for quantitative microscopy
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— Variety of research
objectives for counting
and mapping of

molecules and their
concentrations in cells

With the aid of informatics, microscopy is in the TECHNICAL PERSPECTIVE

evolution into a more quantitacive and powerful | Eyary laboratory with a fluorescence microscope
should consider counting molecules
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Columbus, OH 43210

Stepwise Photobleaching Comparing Fluorescence

Fluctuation Analysis Based
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> Limited to small numbers > Needs calibration measurements
2> Destructive

© PicoQuant GmbH, 2018 2



THE METHOD:
Counting by Photon Statistics (CoPS)

PROOF OF PRINCIPLE:
Measurements with Origami

TOWARDS BIOLOGICAL SAMPLES:
First results
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Mapping molecules in scanning far-field
fluorescence nanoscopy
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Counting by Photon Statistics (CoPS)
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Detection of coincident photons

The Principle behind _
Counting by Photon Statistics (CoPS) (photons that arrive after the same laser pulse)
is similar to antibunching: A /\ /\
N=1
A single molecule can only emit one
photon at a time. N=2/\ . /\ /\
Method developed by Dirk-Peter Herten, A A P(n, p; ) A P, p; ) /\ P(n, p; )
Heldel berg U nive rSIty Adapted from GruBmayer et al.,

Phys. Chem. Chem. Phys., 2017, Suppl.

Confocal microscope with pulsed Measurement of the distribution of multiple
excitation and four detectors photon detection events
excitation Relative probabilities depend on number of emitters
laser N, individual brightness p and number of detectors m.
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Adapted from GruBmayer et al.,
Phys. Chem. Chem. Phys., 2017, Suppl.
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Mapping Molecules based on

Counting by Photon Statistics (CoPS)

Multi-photon detection events Estimated molecular brightness p__

(immobilized DNA Origami with 9 ATTO647N) 0.014
0.0135
0.013
0.0125
0.012

Estimated emitter density N

1-photon events 2-photon events

600
400
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0

scale bar: 1 ym

3-photon events . 4-photon events 1 0.5
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3 0.3
2
1 0.2
0 0.1
Method published by Haisen Ta et al., Nature Communications, 2015 0
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Map of Molecule Distributions
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Analysis of multi-photon detection events

(immobilized Origami with 9 ATTO647N)
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Grey scalebar: Intensity [photons /pixel];
Color scalebar: Number of emitters per spot (summed up density per pixel)

Parameters:
10 yW excitation, 300 us px dwell time, 20nm px size, 10 MHz, 500 x 500 px

Method published by Haisen Ta et al., Nature Communications, 2015
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Histogram of the number
of emitters in one origami
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Analysis Software kindly provided by Haisen Ta



Proof of Principle: Red DNA Origami

Red DNA-Origami with varying
number of emitters (GattaQuant)

* 1ATTO647N
4 ATTO647N
9 ATTO647N
17 ATTO647N
23 ATTO647N
30 ATTO647N

A

Brightness 9R

http://lwww.gattaquant.com/files/gatta-brightness_product_sheet_1.pdf
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Expected numbers of emitters per
origami:
Calculation assuming binomial
distribution with

* n binding sites

* binding probability p
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Proof of Principle: Red DNA Origami

Expected numbers of emitters per

Red DNA-Origami with varying origami: S
number of emitters Calculation assuming binomial
distribution
« 1ATTO647N
e« 4 ATTO647N Measured brightness for increasing
e 9ATTOB47N numbers of emitters per origami:
e 17 ATTO647N * Number of detected photons per
e 23 ATTO647N identified origami in image
e 30 ATTO647N * Normalized for one emitter
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Counting by Photon Statistics: Results with Red DNA Origami

,
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Red DNA Origami: Overestimation for Higher Numbers

U) 1 v I ' 1
g 60 - NBrightness - )
= = N CoPS overestimates the emitter number
o Lot for higher numbers per cluster.
e [ T expected
o 40+ Possible issues:
€ i
= } e - * Saturation of detection electronics
S ool /,.}"' I « Detector afterpulsing
T _,j"' « Interaction of fluorophores in DNA
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Proof of Principle: Blue/Green DNA Origami

,

Blue/green DNA-Origami with
varying number of emitters (GattaQuant)

1 ATTOA488
« 4 ATTO488
« 12 ATTO488
« 24 ATTOA488

1.0
Expected numbers of emitters per Ca"’”g‘ﬁed Mias‘érfd
origami: 5, 087 — B4 | |\mmmB4
Calculation assuming binomial 5 ——B12 | | B12
distribution with 8 06 ——B24 | | B24
* n binding sites >
 binding probability p 3
g 041
Measured brightness for increasing Dc%
numbers of emitters per origami: 0.2
* Number of detected photons per
identified origami in image 0.0

5 10 15 20 25 30
Number of emitters per origami

o

* Normalized for one emitter
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Counting by Photon Statistics:

Results with Blue/Green DNA Origami
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Counting by photon Statistics across the Visible Spectrum

,

Identification of suitable fluorophores

Photostability time tph versus detection
probability p for

* red (640 nm excitation),

* green (532 nm excitation) and

* blue (470 nm excitation) dyes.

Grey line: Minimum photostability time to retain 90% of
all emitters

Published by GruBRmayer et al.,
Phys. Chem. Chem. Phys., 2017

0 2 4 6

Detection Probability p/ 107° Sample + :Measured photostability time tph
and detection probability p for

Origami with 4 ATTO488
(normalized to one emitter)
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Biological Samples

Plasma membranes with YFP
S. Munck, KU Leuven

Additional challenges in biological samples

* Even higher background
* Very dense, overlapping clusters

Nuclear Pore Complex with eGFP * Not two-dimensional, differences in z-
A. Rybina, A. Politi, J. Ellenberg, EMBL, position of clusters
Heidelberg » Fluorescent proteins not as bright, but

slightly more stable than Atto488
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Biological Samples:

Nuclear Pore Complex (16 Emitters expected, EGFP)

Bottom of single interphase cell: Single pores with 16 emitters each

1-photon events

2-photon events 3-photon events 4-photon events
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. i Homozygous cell line NUP214-mEGFP
scale bar: 1 ym (Sample kindly provided by Arina Rybina, Antonio Politi, Jan Ellenberg, EMBL)
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Summary of What Works So Far...

Data Acquisition with MicroTime200, Analysis with Matlab-Software from
four SPADs and HydraHarp Haisen Ta

excitation
laser

Sample Requirements Interested?

* Fixed Sample with low baCkgrOund Please contact us!

* Bright and stable fluorophores
(preferably 640 nm excitation)

* Quantification of single clusters

* Less than 10 Emitters

* Narrow distribution of emitter numbers

« 2D

PicoQuaNT
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Poster P2: Molecular Counting
by Photon Statistics

* Experimental parameters
e Origami with Atto488

* Photobleaching
 Limitations and Outlook
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