
TimeHarp 260

TCSPC and MCS Board with
PCIe Interface

TH260Lib – Programming Library
for Custom Software Development under

Linux

User's Manual

Version 3.1.0.3

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

Table of Contents
1. Introduction... 3

2. Release Notes.. 4

2.1. What's new in this version..4

2.2. General Notes... 4

2.3. Warranty and Legal Terms.. 6

3. Installation of the TH260Lib Software Package..7

3.1. Installing the Driver... 7

3.2. Installing the Library.. 7

3.3. Installing the Demo Programs...8

4. The Demo Applications... 9

4.1. Functional Overview... 9

4.2. The Demo Applications by Programming Language...9

5. Advanced Techniques... 13

5.1. Using Multiple Devices... 13

5.2. Efficient Data Transfer.. 13

5.3. Working with Very Low Count Rates...14

5.4. Working with Warnings... 14

5.5. Hardware Triggered Measurements...14

6. Problems, Tips & Tricks.. 16

6.1. PC Performance Issues.. 16

6.2. PCIe Interface... 16

6.3. Power Saving.. 16

6.4. Troubleshooting.. 16

6.5. Version Tracking... 16

6.6. Software Updates... 17

6.7. Bug Reports and Support... 17

7. Appendix... 18

7.1. Data Types.. 18

7.2. Functions Exported by TH260Lib..18

7.2.1. General Functions.. 19

7.2.2. Device Specific Functions...19

7.2.3. Functions for Use on Initialized Devices...19

7.2.4. Special Functions for TTTR Mode..26

7.3. Warnings... 28

Page 2

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

1. Introduction
The TimeHarp 260 is a cutting edge TCSPC system with PCIe (Peripheral Component Interconnect express)
interface. Its new integrated design provides a flexible number of input channels at reasonable cost and al -
lows innovative measurement approaches. The timing circuits allow high measurement rates up to 40 million
counts per second (Mcps) and provide a very high time resolution. There are two versions of the TimeHarp
260. The PICO version (TimeHarp 260 P) has a resolution of 25 ps and a deadtime of 25 ns whereas the
NANO version (TimeHarp 260 N) provides a time resolution of 250 ps*) with a deadtime of less than 2 ns.
The modern PCIe interface provides very high throughput as well as ‘plug and play’ installation. The input
triggers are programmable for a wide range of input signals. In case of the PICO version they have a pro-
grammable Constant Fraction Discriminator (CFD) for negative going signals while the NANO version
provides level triggers for both negative and positive going signals. These specifications qualify the Time-
Harp 260 for use with most common single photon detectors such as Single Photon Avalanche Diodes
(SPADs) and Photomultiplier Tube (PMT) modules (via preamplifier). The best time resolution is obtained by
using Micro Channel Plate PMTs (MCP–PMT) or modern SPAD detectors together with the PICO version.
The width of the overall Instrument Response Function (IRF) can then be as short as 40 ps FWHM. Both
models of the TimeHarp 260 can be purchased with 2 or 3 timing inputs. The use of these inputs is very flex-
ible. In fluorescence lifetime applications the first channel is typically used as a synchronization input from a
laser. The other input(s) are then used for photon detectors. In coincidence correlation applications all inputs
can be used for photon detectors. The versions with two detector inputs + sync are called DUAL and the ver -
sions with one detector input + sync are called SINGLE.

The TimeHarp 260 can operate in various modes to adapt to different measurement needs. The standard
histogram mode performs real–time histogramming in computer memory. Two different Time–Tagged–Time–
Resolved (TTTR) modes allow recording of each photon event on separate, independent channels, thereby
providing unlimited flexibility in off–line data analysis such as burst detection and time–gated or lifetime
weighted Fluorescence Correlation Spectroscopy (FCS) as well as picosecond coincidence correlation, us-
ing the individual photon arrival times.

TTTR mode also allows capturing so called marker signals on four TTL inputs along with the regular photon
events. This can be used for imaging applications or other synchronization purposes. Note that only the
DUAL versions support markers.

The TimeHarp 260 standard software provides functions such as the setting of measurement parameters,
display of results, loading and saving of measurement parameters and histogram curves. Important meas-
urement characteristics such as count rate, count maximum and position, histogram width (FWHM) are dis-
played continuously. While these features will meet many of the routine demands, advanced users may want
to include the TimeHarp’s functionality in their own automated measurement systems with their own soft-
ware. In particular where the measurement must be interlinked or synchronized with other processes or in-
struments this approach may be of interest. For this purpose a programming library is provided as a Dy-
namic Link Library (DLL) for Windows and as a shared library for Linux. The library supports custom pro-
gramming on the x86 platform in virtually all major programming languages/environments for, notably C, C+
+, C#, Pascal (Delphi / Lazarus), MATLAB and LabVIEW. The Windows and Linux versions are fully API
compatible, so that application programs can easily be ported between the Windows and Linux. This manual
describes the installation and use of the TimeHarp 260 programming library TH260lib.so for Linux and ex-
plains the associated demo programs. Please read both this manual and the TimeHarp manual before be -
ginning your own software developement with the library. The TimeHarp 260 is a sophisticated real-time
measurement system. In order to work with the board using the TimeHarp library, sound knowledge in your
chosen programming language is required. For details on the method of Time–Correlated Single Photon
Counting, please refer to our TechNote on TCSPC.

*) TimeHarp 260 N manufactured before 2016 have a resolution of 1 ns but can be returned for an upgrade to 250 ps at moderate
cost.

Page 3

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

2. Release Notes

2.1. What's new in this version
The new version 3.1.0.3 of TH260Lib for Linux is a bugfix release that solves an issue with sporadic
timeout errors upon hardware initialization that occurred with recent hardware and firmware. Data formats
and interfaces remain unchanged.

The previous version 3.1.0.2 provided these new features:

This bugfix release was triggered by bugfixes for Windows. Since the Linux version uses largely the same
code base it was decided to step it up as well. The positive side effect is a small improvement in histogram -
ming throughput at reduced CPU load. The interface and data structures remain unchanged so that pro-
grams written for version 3.1 will need no changes. Programs written for version 3.0 will only require the ad-
aption of version checking.

The last major release 3.1.0.1 provided these new features:

- support of new hardware versions manufactured after February 2017 (firmware 2.x).
- histogramming throughput improvements
- fix of an issue where debug information was not properly retrieved via
 TH260_GetHardwareDebugInfo after initialization failures
- interface and data structures remain unchanged w.r.t. version 3.0.x

Version 3.0 provided these new features:

- Support of the latest hardware improvement of the TimeHarp 260 N - now running at 250 ps resolution *)
- Some minor bugfixes
- Updated demos
- API and data formats remain unchanged

Version 2.0 provided these new features:

- A new library routine SetInputDeadTime for suppression of some detector artefacts.
 (Note that this works only for TimeHarp 260 P purchased after April 2015. Old boards can be updated but
 must be returned to PicoQuant for this purpose.)
- A bugfix in the shutdown code called upon unloading the library
- Some small demo code improvements
- Some documentation fixes in section 7.2.

The changes are also marked in red in section 7.2 listing the individual library routines. See the notes there
for synopsis.

2.2. General Notes
It is recommended to start your work with your TimeHarp 260 board by using the standard interactive
TimeHarp 260 data acquisition software under Windows. This should give you a better understanding of the
board’s operation before attempting your own programming efforts. It also ensures that your optical/electrical
setup is working.

This version of the TimeHarp 260 programming library requires at least version 3.x Linux kernels. It has
been tested in applications built with gcc, Mono, Free Pascal and LabVIEW.

The following Linux distributions have been tested:

Ubuntu 14.04 kernel 3.13
OpenSUSE 13.2 kernel 3.16
Kubuntu 16.04.1 kernel 4.4
Linux Mint 18 kernel 4.4

*) TimeHarp 260 N manufactured before 2016 have a resolution of 1 ns but can be returned for an upgrade to 250 ps at moderate
cost.

Page 4

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

In addition to an appropriate Linux version you need to have gcc and the kernel source headers for the
running kernel installed. This is required to compile the TimeHarp 260 kernel driver.

This manual assumes that you have read the TimeHarp 260 manual and that you have experience with
Linux and the chosen programming language. References to the TimeHarp manual will be made where
necessary.

The library supports histogramming mode and both TTTR modes but your TimeHarp 260 board must have
the library option enabled. If you have not initially purchased the library option (license) you can upgrade it
any time later.

Users who own a license for any older version of the library will receive free updates when they are avail -
able. For this purpose, please check the PicoQuant web site or write an email to info@picoquant.com.

Users upgrading from earlier versions of TH260Lib may need to adapt their programs. This is the price for
technical progress. However, the required changes are usually minimal and will be explained in the manual
(especially check the notes marked in red in section 7.2).

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version check-
ing in order to avoid incompatibilities. There is a function call tat you can use to retrieve the version number
(see section 7.2). The interface of releases with identical major version will usually remain the same.

Page 5

mailto://info@picoquant.com

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

2.3. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi -
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial
damages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or perform-
ance of this software and associated documentation. Demo code is provided ‘as is’ without any warranties
as to fitness for any purpose.

License and Copyright

With the TimeHarp 260 DLL option you have purchased a license to use the TimeHarp 260 programming lib-
rary. You have not purchased any other rights to the software itself. The software is protected by copyright
and intellectual property laws. You may not distribute the software to third parties or reverse engineer, de -
compile or disassemble the software or part thereof. You may use and modify demo code to create your own
software. Original or modified demo code may be re–distributed, provided that the original disclaimer and
copyright notes are not removed from it. Copyright of this manual and on–line documentation belongs to Pi-
coQuant GmbH. No parts of it may be reproduced, translated or transferred to third parties without written
permission of PicoQuant GmbH.

The kernel driver module for the PCIe interface is licensed independently from the TimeHarp 260
programming library TH260Lib.so. As opposed to TH260Lib.so it is distributed as source code under the
GNU Public License (GPL). Please see the folder driver in the distribution archive for details.

TimeHarp is a registered trademark of PicoQuant GmbH.

Other products and corporate names appearing in this manual may or may not be registered trademarks or
subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks.
They are used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Page 6

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

3. Installation of the TH260Lib Software Package

The TH260Lib package for Linux is provided for 32-bit and 64-bit versions of Linux. Unpack the the distribu-
tion archive somewhere in your home directory and see the corresponding folders in the distribution archive.
Please use consistently only the items that fit your Linux version.

3.1. Installing the Driver

The programming library will access the TimeHarp 260 board(s) through a dedicated kernel driver. As op-
posed to TH260Lib.so this module is distributed as source code under the GNU Public License (GPL).
Please see the subdirectory driver for details.

The kernel driver must be compiled as a module for the specific kernel it is intended to run with. The driver
module th260pcie.ko can be built by issuing the make command in the driver source directory, that you
should copy as a whole from the distribution archive to a temporary disk directory. In that disk location run
make.

If the compiler and kernel headers are installed correctly you should get no errors running make. It is
important to have the right kernel header files included. You need to ensure they are installed and located
(possibly via symlink) under/lib/modules/`uname -r`/build/include where `uname -r` is
retrieving the kernel version via shell command. Most current distributions do this properly, provided you
instructed them to install the kernel headers.

As user 'root' you can then use the command insmod th260pcie.ko to load the driver.

After that you can run tail /var/log/messages or dmesg to see if the board was found and if the
driver was loaded correctly. Recent Linux kernels demand loadable modules to be signed. If dmesg shows a
warning on missing signature you can still work but the kernel will be marked “tainted”. To avoid this you may
want to sign the th260pcie kernel module. See instructions on the Web for how to do this, e.g. at kernel.org.

If the driver does not find any boards you may want to use lspci to check if the board has been detected as
a PCI device at all.

Routinely the driver should be loaded at boot time through a suitable startup script or the distribution's spe -
cific module loading scheme. This is distribution dependent and cannot be explained in more detail here.

In order to let users without root privileges use the board you will need to set up a udev rule that sets appro -
priate permissions. Such a rule script can be found in the folder udev of the TH260Lib archive. On typical
Linux distributions it just needs to be copied to /etc/udev/rules.d or the equivalent folder of your Linux
distribution. You will need to reload the udev rules or restart the computer in order to activate the new rule.

3.2. Installing the Library
The library is distributed as a binary file. By default it resides under /usr/local/lib/th260 on 32-bit
systems and in under /usr/local/lib64/th260 on 64-bit systems. This is not a strict requirement but it
is where the demo programs will look for the library files and therefore it is recommended to use this loca-
tion. If your linux distribution does not follow this convention you may have to fix the paths manually.

The shell script install in the lib32 or lib64 distribution directory does the installation in one step. Just
start it (as root) at the command prompt from within the library directory. After installing, the library is ready to
use and can be tested with the demos provided.

If you want to install the library in a different place and/or if you want to simplify access to the library
you can add the chosen path to /etc/ld.so.conf and/or to the path list in the environment variable
LD_LIBRARY_PATH.

Note for SELinux: If upon linking with th260lib.so you get an error “cannot restore segment prot
after reloc” you need to adjust the security settings for th260lib.so. As root you need to run:
chcon -t texrel_shlib_t /usr/local/lib/th260/th260lib.so

Page 7

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

3.3. Installing the Demo Programs

The demos can be installed by simply copying the entire directory demos32 or demos64 from the
distribution archive to a disk location of your choice. This need not be under the root account but you may
need to adjust the file permissions. Use demos32 if your Linux is a 32-bit version or demos64 if your Linux is
a 64-bit version.

Page 8

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

4. The Demo Applications

4.1. Functional Overview
Please note that all demo code provided is correct to our best knowledge, however, we must disclaim all
warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than educa-
tional purposes and as a starting point for your own work.

Because the TCSPC data acquisition requires real–time processing and / or real–time storing of data, the
work with the library is demanding both in programming skills and computer performance.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This
is why most of the demos have a minimalistic user interface and / or run from the simple command box (con-
sole). For the same reason, the measurement parameters are mostly hard–coded and thereby fixed at com-
pile time. It is therefore necessary to change the source code and re–compile the demos in order to run
them in a way that is matched to your individual measurement setup. Running them unmodified will probably
result in useless data (or none at all) because of inappropriate settings of sync divider, resolution, input
levels, etc.

For the same reason of simplicity, the demos will always only use the first TimeHarp 260 device they find, al-
though the library can support multiple devices. If you have multiple devices that you want to use simultan-
eously you need to change the code to match your configuration.

There are demos for C / C++, C#, Pascal / Lazarus, LabVIEW and MATLAB. For each of these programming
languages / systems there are different demo versions for various measurement modes:

Histogramming Mode Demos

These demos show how to use the standard measurement mode for on–board histogramming. These are
the simplest demos and the best starting point for your own experiments. In case of LabVIEW the standard
mode demo is more sophisticated and allows interactive input of most parameters.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits advanced data analysis methods, such as single molecule burst detection, the
combination of fluorescence lifetime measurement with FCS and picosecond coincidence correlation or even
Fluorescence Lifetime Imaging (FLIM).

The TimeHarp 260 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. For details on the two modes, please refer to your
TimeHarp manual. In TTTR mode it is also possible to record external TTL signal transitions as markers in
the TTTR data stream, which is typically used for FLIM. For more information see the section about TTTR
mode in your TimeHarp manual.

Note that you must not call any of the TH260_Setxxx routines while a TTTR measurement is running. The
result would potentially be loss of events in the TTTR data stream. Changing settings during a measurement
makes no sense anyway, since it would introduce data inconsistency.

4.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, Pascal / Lazarus, C#, LabVIEW and MATLAB. For each of
these programming languages / systems there are different demo versions for the measurement modes lis-
ted in the previous section. They are not 100% identical.

This manual explains the special aspects of using the TimeHarp programming library, it does NOT teach you
how to program in the chosen programming language. We strongly recommend that you do not choose a de-
velopment with the TimeHarp programming library as your first attempt at programming. You will also need
some knowledge about Linux and dynamic linking. The ultimate reference for details about how to use the
libary is in any case the source code of the demos and the header files of TH260Lib (th260lib.h and
th260defin.h).

Page 9

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application and / or your complete computer. This may even be the case for
relatively safe operating systems because you are accessing a kernel mode driver through TH260Lib. This
driver has high privileges at kernel level, that provide all power to do damage if used inappropriately. Make
sure to backup your data and / or perform your development work on a dedicated machine that does not
contain valuable data. Note that the library is not fully re–entrant. This means, it cannot be accessed arbitrar-
ily from multiple, concurrent processes or threads at the same time. Only calls accessing different boards
can be made concurrently. All calls to one individual board must be made sequentially in the order shown in
the demos.

The C / C++ Demos

These demos are provided in the C subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult th260lib.h, th260defin.h and this manual for reference on the
library calls. The library functions must be declared as extern "C" when used from C++. This is achieved
most elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "th260defin.h"

 #include "th260lib.h"

}

To test any of the demos, consult the TimeHarp manual for setting up your TimeHarp 260 and establish a
measurement setup that runs correctly and generates useable test data. Compare the settings (notably sync
divider, binning and CFD levels) with those used in the demo and use the values that work in your setup
when building and testing the demos.

The C demos are designed to run in a console (terminal window). They need no command line input para -
meters. They create their output files in their current working directory (*.out). The output files will be AS-
CII–readable in case of the standard histogramming demos. For this demo, the ASCII files will contain one or
multiple columns of integer numbers representing the counts in the histogram bins. You can use any editor
or a data visualization program to inspect the ASCII histograms. For the TTTR modes the output is stored in
binary format for performance reasons. The binary files must be read by dedicated programs according to
the format they were written in. The file read demos provided for the TimeHarp TTTR data files can be used
as a starting point. They cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the TH260Lib demos focused on the key issues
of using the library.

By default, the TTTR mode demo is configured for T2 mode. You need to change the mode input variable
going into TH260_Initialize to a value of 3 if you want T3 mode. Note that you probably also need to adjust
the sync divider and the resolution in this case.

The C# Demos

The C# demos are provided in the Csharp subfolder. They have been tested with MS Visual Studio 2010
under Windows as well as with Mono under Linux. The only difference is the library name, which in principle
could also be unified.

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type specific-
ation of the parameters. Not all types are easily portable. Especially C strings require special handling. The
demos show how to do this.

With the C# demos you also need to check wether the hardcoded settings are suitable for your actual instru-
ment setup. The demos are designed to run in a console (terminal window). They need no command line in -
put parameters. They create their output files in their current working directory (*.out). The output files will be
ASCII in case of the histogramming demos. For TTTR mode the output is stored in binary format for perform -
ance reasons. The ASCII files will contain single or multiple columns of integer numbers representing the
counts from the histogram channels. You can use any editor or a data visualization program to inspect the
ASCII histograms. The binary files must be read by dedicated programs according to the format they were
written in.

Page 10

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

The Pascal / Lazarus Demos

Pascal or Lazarus users refer to the Pascal folder. Lazarus users can use the *.LPI files to load the pro-
jects.

In order to make the exports of TH260Lib known to your application you have to declare each function in
your Pascal code as ‘external’. This is already prepared in the demo source code. Please check the function
parameters of your code against th260lib.h in the demo directory whenever you update to a new library ver-
sion.

The Pascal / Lazarus demos are also designed to run in a console (terminal window). They need no com-
mand line input parameters. They create output files in their current working directory. The output files will be
ASCII in case of the histogramming demo. In TTTR mode the output is stored in binary format for perform -
ance reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files
must be read by dedicated programs according to the format they were written in. The file read demos
provided for the TimeHarp 260 TTTR data files can be used as a starting point. They cannot be used directly
on the demo output because they expect a file header the demos do not generate. This is intentional in order
to keep the demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into TH260_Initialize to a value of 3 if you want
T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suitable
range (resolution).

The LabVIEW Demos

The LabVIEW demo VIs are provided in the LABVIEW folder. They are contained in LabVIEW libraries
(*.llb). The top–level VIs are HISTOmain.vi in HISTOmode.vi and TTTRmain.vi in TTTRmode.vi.
Note that the toplevel VIs share some identical sub-VIs in common.llb. You need to have LabVIEW 8.0 or
higher.

The LabVIEW demos are the most sophisticated demos here. The standard mode demo resembles the
standard TimeHarp software with input fields for all settable parameters. Run the top–level VI named
HISTOmain.vi. It will first initialize the hardware. The status of initialization will be shown in the top left dis-
play area. Make sure you have a functional setup with signals correctly connected. You can then adjust the
sync level until you see the expected sync rate in the meter below. Then you can click the Run button below
the histogram display area. The demo implements a simple Oscilloscope mode. Make sure to set an acquisi -
tion time of not much more than e.g. a second, otherwise you will see nothing for a long time. If the input dis-
criminator settings are correct you should see a histogram. You can stop the measurement with the same
(Run) button.

The TTTR mode demo for LabVIEW is a little simpler. It provides the same panel elements for setting para-
meters etc. but there is no graphic display of results. Instead, all data is stored directly to disk. By default, the
TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync rates. You need
to change the mode input variable going into to the Initialization VI to a value of 3 if you want T3 mode. You
also need to use an appropriate sync divider and a suitable range (resolution).

To run the TTTR mode demo you start TTTRmain.vi. First set up the Sync and CFD levels. You can watch
the sync rate in a graphic rate meter. Then you can select a measurement time and a file name. When you
click the Run button a measurement will be performed, with the data going directly to disk. There is a status
indicator showing the current number of counts recorded. There is also a status LED indicating any FIFO
overrun.

Internally the TTTR mode demo also deserves a special note: each TTTR record as returned in the buffer of
TH260_ReadFiFo actually is a DWORD (32bit). However, LabVIEW stores DWORD data (U32) always in
big endian format. On the Intel platform (little endian) this results in reversed bytes compared to C programs.
For consistency with the demo programs for reading TTTR data this byte reversing of the data going to disk
is avoided in the demo by declaring the buffer for TH260_ReadFiFo as a byte array (hence 4 times larger
than the DWORD array). You may instead want to work with a U32 array if your goal is not storing data to
disk but doing some on–line analysis of the TTTR records. In this case you must initialize the array with U32
and change the type of buffer in the library calls of TH260_ReadFiFo to U32.

The LabVIEW demos access the library routines via the ‘Call Library Function’ of LabVIEW. For details refer
to the LabVIEW documentation. Consult th260lib.h or the manual section further down for the parameter
types etc. Make sure to specify the correct calling convention (stdcall).

Page 11

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

Strictly observe that the TH260_xxxx library calls relating to the same device are not re–entrant. They must
be made sequentially and in the right order. They cannot be called in parallel as is the default in LabVIEW if
you place them side by side in a diagram. Although you can configure each library call to avoid parallel exe -
cution, this still gives no precise control over the order of execution. For some of the calls this order is very
important. Sequential execution must therefore be enforced by sequence structures or data dependency. In
the demos this is typically done by chained and/or nested case structures. This applies to all VI hierarchy
levels, so sub–VIs containing library calls must also be executed in correct sequence.

The MATLAB Demos

The MATLAB demos are provided in the MATLAB folder. They are contained in .m files. You need to have a
MATLAB version that supports the loadlibrary and calllib commands. The earliest version we have
tested is MATLAB 7.3 but any version from 6.5 should work. Note that recent versions of MATLAB require a
compiler to be set up for work with DLLs. For your specific version of MATLAB, please check the document-
ation of the MATLAB command loadlibrary as to what it requires. Be careful about the header file name
specified in loadlibrary. The names are case sensitive and a wrong spelling will lead to an apparently
successful load - but later no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for performance reasons. You
can use any data visualization program to inspect the ASCII histograms. The binary files must be read by
dedicated programs according to the format they were written in. The file read demos provided for the Time-
Harp 260 TTTR data files can be used as a starting point. They cannot be used directly on the demo output
because they expect a file header the demos do not generate. This is intentional in order to keep the demos
focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into TH260_Initialize to a value of 3 if you
want T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suit -
able range (resolution).

Page 12

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

5. Advanced Techniques

5.1. Using Multiple Devices
The library is designed to work with multiple TimeHarp 260 devices (up to 4). The demos always use the first
device found. If you have more than one TimeHarp 260 and you want to use them together you need to
modify the code accordingly. At the API level of TH260Lib the devices are distinguished by a device index
(0 .. 3). The device order corresponds to the order Linux enumerates the devices. It may therefore be difficult
to know which physical device corresponds to the given device index. In order to solve this problem, the lib -
rary routine TH260_OpenDevice provides a second argument through which you can retrieve the serial
number of the physical device at the given device index. Similarly you can use TH260_GetSerialNumber
any time later on a device you have successfully opened. The serial number of a physical TimeHarp device
can be found on a label at the back of the PCB. It is a 8 digit number starting with 010. The leading zero will
not be shown in the serial number strings retrieved through TH260_OpenDevice or TH260_GetSerial-
Number. If you install multiple devices in one PC it is a good idea to write down the serial nubers and their
respective installation slots before you close the PC.

As outlined above, if you have more than one TimeHarp 260 and you want to use them together you need to
modify the demo code accordingly. This requires briefly the following steps: Take a look at the demo code
where the loop for opening the device(s) is. In most of the demos all available devices are opened. You may
want to extend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs.

By means of the device indices you picked out, you can then extend the rest of the program, so that every
action taken on the single device is also done on all devices of interest, i.e. initialization, setting of paramet -
ers, starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap-
proach. It does no harm if you close a device that you haven't opened.

5.2. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the TimeHarp 260 uses busmaster DMA transfers. This is sup-
ported by the PC hardware that can transfer data to the host memory without much help of the CPU. For the
TimeHarp 260 this permits data throughput as high as 40 Mcps and leaves time for the host to perform other
useful things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function TH260_ReadFiFo
that accepts a buffer address where the data is to be placed, and a transfer block size. This block size is crit -
ical for efficient transfers. The larger the block size, the better the transfer efficiency. This is because setting
up a transfer costs some fixed amount of time, independent of the block size. The maximum transfer block
size is 131,072 (128k event records). However, it may not under all circumstances be ideal to use the max-
imum size. The minimum size is 128.

As noted above, the transfer is implemented efficiently without using the CPU excessively. Nevertheless, as-
suming large block sizes, the transfer takes some time. Linux therefore gives the unused CPU time to other
processes or threads, i.e., it waits for completion of the transfer without burning CPU time. This wait time is
what can also be used for doing ‘useful things’ in terms of any desired data processing or storing within your
own application. The way of doing this is to use multi–threading. In this case you design your program with
two threads, one for collecting the data (i.e. working with TH260_ReadFiFo) and another for processing or
storing the data. Multiprocessor systems can benefit from this technique even more. Of course you need to
provide an appropriate data queue between the two threads and the means of thread synchronization.
Thread priorities are another issue to be considered. Finally, if your program has a graphic user interface you
may need a third thread to respond to user actions reasonably fast. Again, this is an advanced technique
and cannot be demonstrated in detail here. Greatest care must be taken not to access the library from differ -
ent threads without strict control of mutual exclusion and maintaining the right sequence of function calls.

Page 13

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

However, the technique allows significant throughput improvements and advanced programmers may want
to use it. It might be interesting to note that this is how TTTR mode is implemented in the regular Time-
Harp 260 software for Windows, where sustained count rates as high as 40 Mcps (to disk) can be achieved.

In case of using multiple devices it is also beneficial for overall throughput if you use multi–threading in order
to fetch and store data from the individual devices in parallel. Again, re–entrance issues must be observed
carefully in this case, at least for all calls accessing the same device.

5.3. Working with Very Low Count Rates
As noted above, the transfer block size is critical for efficient transfers. The larger the block size, the better
the transfer efficiency. This is because setting up a transfer costs some fixed amount of time, independent of
the block size. However, it may not under all circumstances be ideal to use the maximum size. A large block
size takes longer to fill. If the count rates in your experiment are very low, it may be better to use a smaller
block size. This ensures that the transfer function returns more promptly. It should be noted that the Time-
Harp has a “watchdog” timer that terminates large transfer requests prematurely so that they do not wait
forever if new data is coming very slowly. This results in TH260_ReadFiFo returning less than requested
(possibly even zero). This helps to avoid complete stalls even if the maximum transfer size is used with low
or zero count rates. However, for fine tuning of your application may still be of interest to use a smaller block
size. The block size must be a multiple of 128 records. The smallest permitted size is 128.

Also note that with very low count rates (and sync rates) the hardware meters read via TH260_GetSyn-
cRate as well as TH260_GetCountRate are of limited precision. The hardware meters are using a
counter time window of 100 ms. Consequently, their resolution at the lower rate end is limited. If you must
determine very slow sync rates you may want to use TH260_GetSyncPeriod. Note, however, that this
routine does not average over multiple periods and may therefore deliver slightly more fluctuating results. If
you need to determine very low count rates, the only solution is to perform a measurement and count the
results.

5.4. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular TimeHarp software for Win-
dows. In order to obtain and use these warnings also in your custom software you may want to use the lib -
rary routine TH260_GetWarnings. This may help inexperienced users to notice possible mistakes before
stating a measurement or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that TH260_GetWarnings does not obtain the count rates on its
own, because the corresponding calls take some time and might waste too much processing time. It is there -
fore necessary that TH260_GetSyncRate as well as TH260_GetCountRate (for all channels) have been
called before TH260_GetWarnings is called. Since most interactive measurement software periodically re-
trieves the rates anyhow, this is not a serious complication.

The routine TH260_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to
translate this into readable information you can use TH260_GetWarningsText. Before passing the bit field
into TH260_GetWarningsText you can mask out individual warnings by means of the bit masks defined in
hhdefin.h.

5.5. Hardware Triggered Measurements
This measurement scheme works essentially like regular histogramming mode but it allows to start and stop
the acquisition by means of external TTL signals. Since it is an advanced real-time technique, beginners are
advised not to use it for first experiments. For the same reason, the correspondin demos exist only in C.

Before using this scheme, consider when it is useful to do so. Remember that TTTR mode is usually the
most efficient way of retrieving the maximum information on photon dynamics. By means of marker inputs
the photon events can be precisely assigned to complex external event scenarios.

The TimeHarp's data acquisition can be controlled in various ways. Default is the TimeHarp's internal CTC
(counter timer circuit). In that case the histograms will take the duration set by the tacq parameter passed to
TH260_StartMeas. The other way of controlling the histogram boundaries (in time) is by external TTL sig-
nals fed to the control connector pins C1 and C2. In that case it is possible to have the acquisition started

Page 14

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

and stopped when specific signals occur. It is also possible to combine external starting with stopping
through the internal CTC. Details are cotrolled by the parameters supplied to TH260_SetMeasControl.
Dependent on the parameter meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until CTC expires. The duration
is set by the tacq parameter passed to
TH260_StartMeas.

MEASCTRL_C1_GATE 1 Histograms are collected for the period where C1 is
active. This can be the logical high or low period
dependent on the value supplied to the parameter
startedge.

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to TH260_StartMeas.

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the parameters startedge and
stopedge.

The symbolic constants shown above are defined in th260defin.h. There are also symbolic constants for
the parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to de-
tect the beginning and end of a measurement.

Page 15

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

6. Problems, Tips & Tricks

6.1. PC Performance Issues
The TimeHarp device and its software interface are a complex real–time measurement system demanding
appropriate performance both from the host PC and the operating system. This is why a reasonably modern
CPU and sufficient memory are required. At least a dual core, 2 GHz processor, 2 GB of memory and a fast
hard disk are recommended.

6.2. PCIe Interface
In order to deliver maximum throughput, the TimeHarp 260 uses state–of–the–art busmastering DMA trans-
fers. For this purpose it requires an interrupt line. Dependent on the design of the PC's mainboard there may
be limited interrupt ressources so that slot cards and/or onboard devices need to share interrupt lines. This
may lead to conflicts and/or performance degradation. Interrupt sharing can sometimes be avoided by using
another slot. In some cases it is also possible to change interrupt assignments in the BIOS setup. Contact
PicoQuant for assistance if you are in doubt which PC or mainboard to buy.

6.3. Power Saving
If your computer is configured to allow power saving (suspend/sleep) then (dependent on the BIOS configur-
ation) the TimeHarp device may be powered down more or less unexpectedly. In order to avoid loss of data
you may need to design your software so that it detetcs the corresponding power events (signals) sent by
the operating system, stop the current measurement and save the data. Upon wakeup you will need to re-
peat the initialization sequence of library calls to allow new measurements.

Another form of power saving that can cause complications is PCIe link power management (ASPM). There
are Mainboards where ASPM is not implemented properly so that the TimeHarp 260 and other high speed
PCIe cards will not work. Some mainboard manufacturers such as ASUS provide BIOS updates that fix the
issues. In cases where such updates are not abvailable the workaround is to disable PCIe link power saving
in the BIOS (if available) or at operating system level (if available).

6.4. Troubleshooting
Troubleshooting should begin by testing your hardware setup. This is best accomplished by the standard
TimeHarp software for Windows (supplied by PicoQuant). Only if this software is working properly you
should start work with the library under Linux. If there are problems even with the standard software, please
consult the TimeHarp manual for detailed troubleshooting advice.

The library will access the TimeHarp device through a dedicated kernel driver. You need to make sure the
driver has been installed and loaded correctly. You also need to make sure access permissions for users
other than root are set via udev. See section 7. Please consult the TimeHarp manual for hardware related
problem solutions.

The next step, if hardware and driver are working, is to make sure you have the right library version installed.
See section 7. You should also make sure your board has the right firmware with license to use the DLL.

To get started, try the readily compiled demos supplied with the DLL. For first tests take the standard histo -
gramming demos. If this is working, your own programs should work as well. Note that the hard coded set -
tings may not be compatible with your experimental setup. Then the pre–compiled demo may not work as
expected. Only the LabVIEW demo allows to enter the settings interactively.

6.5. Version Tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel -
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and library. In any case your software should issue a warning if it
detects versions other than those it was tested with.

Page 16

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

6.6. Software Updates
We work hard to constantly improve and update the software for our instruments. This includes updates of
the configurable hardware (FPGA). Such updates are important as they may affect reliability and interoper-
ability with other products. The software updates are free of charge, unless major new functionality is added.
It is strongly recommended that you check the PicoQuant website for library updates before investing time
and effort into a new software development.

6.7. Bug Reports and Support
The TimeHarp 260 TCSPC system has gone through extensive testing. Nevertheless, it is a fairly new
product and some glitches may still occur under the myriads of possible PC configurations and application
circumstances. We therefore would like to offer you our support in any case of problems with the system. Do
not hesitate to contact your sales representative or PicoQuant in case of difficulties with your TimeHarp or
the programming library.

If you should observe errors or bugs caused by the TimeHarp system please try to find a reproducible error
situation. Email a detailed description of the problem and all relevant circumstances, especially other hard-
ware installed in your PC, to support@picoquant.com. Please provide a listing of your PC configuration and
attach it to your error report. Your feedback will help us to improve the product and documentation.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications. At our Web–
site we maintain a large bibliography of publications related to our instruments. It may serve as a reference
for you and other potential users. See http://www.picoquant.com/scientific/references/. Please submit your
publications for addition to this list.

Page 17

mailto://support@picoquant.com

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

7. Appendix

7.1. Data Types
The TimeHarp programming library TH260Lib is written in C and its data types correspond to standard
C / C++ data types as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note that on platforms other than the Intel x86 architecture byte swapping may occur when the TimeHarp
data files are read there for further processing. We recommend using the native Intel architecture environ-
ment consistently.

7.2. Functions Exported by TH260Lib
See th260defin.h for predefined constants given in capital letters here. Return values < 0 denote errors.
See errcodes.h for the error codes. Note, that TH260Lib is a multi device library with the capability to
control more than one TimeHarp 260 simultaneously. For that reason all device specific functions (i.e. the
functions from section 7.2.2 on) take a device index as first argument. The TimeHarp 260 may have one or
two input channels. Note that functions taking a channel number as an argument expect the channels enu -
merated 0..N-1 while the graphical TimeHarp 260 software (Windows) as well as the connector labelling
enumerates the channels 1..N. This is due to internal data structures and consistency with earlier products.

Page 18

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

7.2.1. General Functions
These functions work independent from any device.

int TH260_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a TH260_xxx function call

return value: >0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

int TH260_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Use the version information to ensure compatibility of the library with your own application.

7.2.2. Device Specific Functions
All functions below are device specific and require a device index.

int TH260_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..3
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Opens the device for use. Must be called before any of the other functions below can be used.

int TH260_CloseDevice (int devidx);

arguments: devidx: device index 0..3

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int TH260_Initialize (int devidx, int mode);

arguments: devidx: device index 0..3
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the meas-
urement mode you select here. See the TimeHarp manual for more information on the measurement modes.

7.2.3. Functions for Use on Initialized Devices
All functions below can only be used after TH260_Initialize was successfully called.

Page 19

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_GetHardwareInfo (int devidx, char* model, char* partno, char* version);

arguments: devidx: device index 0..3
model: pointer to a buffer for at least 16 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 16 characters

return value: =0 success
<0 error

int TH260_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..3
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int TH260_GetFeatures (int devidx, int* features);

arguments: devidx: device index 0..3
flags: pointer to an integer

returns features of this board (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit feature values in th260defin.h (FEATURE_xxx) to extract individual bits through a bitwise AND.
Typically this is only for information, or to check if your board has a specific (optional) capability.

int TH260_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..3
resolution: pointer to a double precision float (32 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the maximally allowed binning steps

return value: =0 success
<0 error

Note: The value returned in binsteps is the maximum value allowed for the TH260_SetBinning function.

int TH260_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..3
nchannels: pointer to an integer,

returns the number of installed input channels

return value: =0 success
<0 error

Note: The number of input channels is counting only the regular detector channels. It does not count the sync channel. Neverthe-
less, it is possible to connect a detector also to the sync channel, e.g. in histogramming mode for antibunching or in T2
mode.

int TH260_SetTimingMode(int devidx, int mode); // TimeHarp 260 P only

arguments: devidx: device index 0..3
mode: 0 = Hires (25ps), 1 = Lowres (2.5 ns, a.k.a. “Long range”)

 will change the base resolution of the board

return value: =0 success
<0 error

Page 20

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..3
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values < 40 MHz. It should only be used with sync sources
of stable period. The readings obtained with TH260_GetCountRate are corrected for the divider setting and deliver the ex-
ternal (undivided) rate. When the sync input is used for a detector signal the divider should be set to 1.

int TH260_SetSyncCFD (int devidx, int level, int zerox); // TimeHarp 260 P only

arguments: devidx: device index 0..3
level: CFD discriminator level in millivolts

minimum = CFDLVLMIN
maximum = CFDLVLMAX

zerox: CFD zero cross level in millivolts
minimum = CFDZCMIN
maximum = CFDZCMIN

return value: =0 success
<0 error

int TH260_SetSyncEdgeTrg (int devidx, int level, int edge); // TimeHarp 260 N only

arguments: devidx: device index 0..3
level: Trigger level in millivolts

minimum = CFDLVLMIN
maximum = CFDLVLMAX

edge: Trigger edge
0 = falling
1 = rising

return value: =0 success
<0 error

int TH260_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..3
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

int TH260_SetInputCFD (int devidx, int channel, int level, int zerox); // TimeHarp 260 P only

arguments: devidx: device index 0..3
channel: input channel index 0..1
level: CFD discriminator level in millivolts

minimum = CFDLVLMIN
maximum = CFDLVLMAX

zerox: CFD zero cross level in millivolts
minimum = CFDZCMIN
maximum = CFDZCMAX

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChannels().

int TH260_SetInputEdgeTrg (int devidx, int channel, int level, int edge); // TimeHarp 260 N only

arguments: devidx: device index 0..3
channel: input channel index 0..1
level: CFD discriminator level in millivolts

minimum = DISCRMIN

Page 21

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

maximum = DISCRMAX
edge: Trigger edge

0 = falling
1 = rising

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChannels().

int TH260_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..3
channel: input channel index 0..nchannels-1
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChannels().

int TH260_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..3
channel: input channel index 0..nchannels-1
enable: desired enable state of the input channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChannels().

int TH260_SetInputDeadTime (int devidx, int channel, int tdcode); // new since v2.0, TH260 P only

arguments: devidx: device index 0..3
channel: input channel index 0..nchannels-1
tdcode: code for desired deadtime of the input channel

minimum = TDCODEMIN
maximum = TDCODEMAX

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChannels().
The codes 0..7 correspond to approximate deadtimes of 24, 44, 66, 88 112, 135, 160 and 180 ns. Exact values are subject
to production tolerances on the order of 10%. This feature is not available in boards produced before April 2015 but can be
upgraded on request. The main purpose is that of suppressing artefacts (afterpulsing) produced by some types of detectors.
Whether or not a given board supports this feature can be checked via TH260_GetFeatures and the bit mask FEA-
TURE_PROG_TD as defined in thdefin.h. Note that the programmable deadtime is not available for the sync input.

int TH260_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..3
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Note: This setting determines if a measurement run will stop if any channel reaches the maximum set by stopcount. If stop_ofl
is 0 the measurement will continue but counts above STOPCNTMAX in any bin will be clipped.

Page 22

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..3
binning: measurement binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS-1) (largest)

return value: =0 success
<0 error

Note: binning corresponds to repeated multiplication of the base resolution by 2 as follows:

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int TH260_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..3
offset: histogram time offset in ns

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: The offset programmed here is fundamentally different from the input offsets. It applies only after the time difference of input
 channel and sync has been calculated. It can be used to move arge stop-start differences into the histogram range that would
 normally not be recorded. It is only meaningful in histogramming and T3 mode.

int TH260_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..3
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE (default)

actuallen: pointer to an integer,
returns the current length (time bin count) of histograms
calculated according to: actuallen = 1024*(2^lencode)

return value: =0 success
<0 error

Note: This sets the number of time bins in histogramming and T3 mode. It is not meaningful in T2 mode.

int TH260_ClearHistMem (int devidx);

arguments: devidx: device index 0..3

return value: =0 success
<0 error

Note: This clears the histogram memory. It is not meaningful in T2 and T3 mode.

int TH260_SetTriggerOutput (int devidx, int period);

arguments: devidx: device index 0..3
period: trigger period in units of 100ns (0=off)

minimum = TRIGOUTMIN
maximum = TRIGOUTMAX

return value: =0 success
<0 error

Note: This can be used to trigger external light sources. Use with caution when triggering lasers: Software can fail.

Page 23

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..3
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP

startedge: edge selection code
0 = falling
1 = rising

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

Note: This is a very specialized routine for externally (hardware) controlled measurements. Normally it is not needed.
See section Fehler: Referenz nicht gefunden for details.

int TH260_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..3
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

Note: This starts a measurement in the current measurement mode. Should be called after all settings are done.
Previous measurements should be stopped before calling this routine again.

int TH260_StopMeas (int devidx);

arguments: devidx: device index 0..3

return value: =0 success
<0 error

Note: This must be called after the acquisition time is expired. Can also be used to force stop before the acquisition time expires.

int TH260_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..3
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition running
1 = acquisition has ended

return value: =0 success
<0 error

Note: This routine should be called to determine if the acuisition time has expired.

int TH260_GetHistogram (int devidx, unsigned int *chcount, int channel, int clear);

arguments: devidx: device index 0..3
chcount pointer to an array of at least actuallen double words (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1
clear denotes the action upon completing the reading process

0 = keeps the histogram in the acquisition buffer
1 = clears the acquisition buffer

return value: =0 success
<0 error

Note: The histogram buffer size actuallen must correspond to the value obtained through TH260_SetHistoLen().
The maximum input channel index must correspond to nchannels-1 as obtained through TH260_GetNumOfInputChan-
nels().

Page 24

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..3
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps

return value: =0 success
<0 error

Note: This is meaningful only in histogramming and T3 mode. T2 mode always runs at the boards's base resolution.

int TH260_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..3
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

Note: This is used to get the pulse rate at the sync input. The result is internally corrected for the current sync divider setting.
Allow at least 100 ms after TH260_Initialize or TH260_SetSyncDivider to get a stable rate reading. Similarly,
wait at least 100 ms to get a new reading. This is the gate time of the hardware counters.

int TH260_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..3
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after TH260_Initialize to get a stable rate reading. Similarly, wait at least 100 ms to get a new reading.
This is the gate time of the hardware counters. The maximum channel index must correspond to nchannels-1 as obtained
through TH260_GetNumOfInputChannels().

int TH260_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..3
flags: pointer to an integer

returns current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in th260defin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.

int TH260_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..3
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: During a measurememt this can be called to obtain the measurement time that has elapsed so far. After a measurement it
will return the time that actually elapsed before the measurement was stopped (e.g. due to histogram overflow or forced
stop).

int TH260_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..3
*warnings: pointer to integer bitfield receiving the warnings

return value: =0 success
<0 error

Note: You must call TH260_GetCoutRate and TH260_GetCoutRate for all channels prior to this call.

Page 25

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..3
text: pointer to a buffer for at least 16384 characters
warnings: integer bitfield obtained from TH260_GetWarnings

return value: =0 success
<0 error

Note: This helps to identify suspicious measurement conditions that may be due to inappropriate settings.

int TH260_GetHardwareDebugInfo (int devidx, char* text);

arguments: devidx: device index 0..3
text: pointer to a buffer for at least 16384 characters

return value: =0 success
<0 error

note: Call this routine if you receive the error code TH260_ERROR_STATUS_FAIL or the flag FLAG_SYSERROR.
See th260defin.h and errorcodes.h for the numerical values of these codes. Provide the result for support.

int TH260_GetSyncPeriod(int devidx, double* period);

arguments: devidx: device index 0..3
period: pointer to a double precision float (64 bit)

returns the sync period in seconds

return value: =0 success
<0 error

note: As opposed to GetSyncRate this does not integrate over multiple periods. The period value is only useful in applications with
periodic sync signals. In case of very long periods it takes a correspondingly long time to get a meaningful result. This time is
increased to n-fold if a sync divider n is set.

7.2.4. Special Functions for TTTR Mode

int TH260_ReadFiFo (int devidx, unsigned int* buffer, int count, int* nactual);

arguments: devidx: device index 0..3
buffer: pointer to an array of count double words (32bit)

where the TTTR data can be stored
count: number of TTTR records the buffer can hold

(min = TTREADMIN, max = TTREADMAX)
nactual: pointer to an integer

returns the number of TTTR records received

return value: =0 success
<0 error

Note: CPU time during wait for completion will be yielded to other processes / threads. The call will return after a timeout
period of a few ms if no more data could be fetched. The buffer must not be accessed until the call returns.

int TH260_SetMarkerEdges (int devidx, int me0, int me1, int me2, int me3);

arguments: devidx: device index 0..3
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Page 26

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

int TH260_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..3
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

int TH260_SetMarkerHoldoffTime (int devidx, int holdofftime);

arguments: devidx: device index 0..3
en<n>: desired holdoff time for marker signals in nanoseconds

min = 0,
max = 25500

return value: =0 success
<0 error

Note: Afer receiving a marker the system will suppress subsequent markers for the duration of holdofftime (ns). This can be
used to suppress glitches on the marker signals. This is only a workaround for poor signals. Try to solve the problem at its
root, i.e. the quality of marker source and cabling.

Page 27

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

7.3. Warnings
The following is related to the warnings (possibly) generated by the library routine TH260_GetWarnings.
The mechanism and warning criteria are the same as those used in the regular TimeHarp 260 software for
Windows and depend on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that TH260_GetCoutrate has been
called for all channels before TH260_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur
in all measurement modes. Also, count rate limits for a specific warning may be different in different modes.
The following table lists the possible warnings in the three measurement modes and gives some explanation
as to their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No pulses are detected at the sync input. In histogramming and
T3 mode this is crucial and the measurement will not work
without this signal.

√ √

WARNING_SYNC_RATE_VERY_LOW

The detected pulse rate at the sync input is below 100 Hz and
cannot be determined accurately. Other warnings may not be re-
liable under this condition.

√ √

WARNING_SYNC_RATE_TOO_HIGH

The pulse rate at the sync input (after the divider) is higher than
40 MHz. Sync events will be lost in dead time.

T2 mode is normally intended to be used without a fast sync sig-
nal and without a divider. If you see this warning in T2 mode you
may accidentally have connected a fast laser sync.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadically
see this warning if your detector has a very low dark count rate
and is blocked by a shutter. In that case you may want to dis-
able this warning.

√ √ √

WARNING_INPT_RATE_TOO_HIGH

The overall pulse rate at the input channels is higher than
40 MHz. The measurement will inevitably lead to a FiFo overrun.
There are some rare measurement scenarios where this condi-
tion is expected and the warning can be disabled. Examples are
measurements where the FiFo can absorb all data of interest
before it overflows.

√ √ √

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when the
rate at any input channel is higher than 5% of the sync rate. This
is the classical pile-up criterion. It will lead to noticeable dead-
time artefacts. There are rare measurement scenarios where
this condition is expected and the warning can be disabled. Ex-
amples are antibunching measurements.

√ √

Page 28

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

Warning Histo Mode T2 Mode T3 Mode

WARNING_DIVIDER_GREATER_ONE

In T2 mode:

The sync divider is set larger than 1. This is probably not inten-
ded. The sync divider is designed primarily for high sync rates
from lasers and requires a fixed pulse rate at the sync input. In
that case you should use T3 mode. If the signal at the sync input
is from a photon detector (coincidence correlation etc.) a divider
> 1 will lead to unexpected results. There are rare measurement
scenarios where this condition is intentional and the warning
can be disabled.

In histogramming and T3 mode:

The pulse rate at the sync input is below 40 MHz and the Sync-
Divider >1 is not needed. The measurement may yield unneces-
sary jitter if the sync source is not very stable.

√ √ √

WARNING_DIVIDER_TOO_SMALL

The pulse rate at the sync input (after the divider) is higher than
40 MHz and Sync events will be lost in dead time. Increase the
sync divider.

√ √

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when the
sync period (1/SyncRate) is longer than the start to stop time
span that can be covered by the histogram or by the T3 mode
records. You can calculate this time span as follows:
 Span = Resolution * 32768
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional and
the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when an
offset >0 is set even though the sync period (1/SyncRate) can
be covered by the measurement time span without using an
offset. The offset may lead to events getting discarded. There
are some measurement scenarios where this condition is
intentional and the warning can be disabled.

√ √

WARNING_COUNTS_DROPPED

This warning is issued when the front end of the data procesing
pipeline was not able to process all events that came in. This
will occur typically only at very high count rates during intense
bursts of events.

√ √ √

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, slow rise times, poor pulse shapes or bad connections. If in doubt, check all signals
with an oscilloscope of sufficient bandwidth.

Page 29

PicoQuant GmbH TimeHarp 260 TH260Lib Programming Library V. 3.1.0.3

Page 30

All information given in this manual is reliable to our best knowledge. However, no responsibility is assumed for
possible inaccuracies or omissions. Specifications and external appearance are subject to change without notice.

PicoQuant GmbH
Unternehmen für optoelektronische Forschung und Entwicklung
Rudower Chaussee 29 (IGZ), 12489 Berlin, Germany
Telephone: +49 - (0)30 -1208820-0
Fax: +49 - (0)30 -1208820-90
e-mail: info@picoquant.com
WWW: http://www.picoquant.com

http://www.picoquant.com/
mailto://info@picoquant.com

