
HydraHarp 400

Picosecond Histogram Accumulating
Real–time Processor

User's Manual

Version 3.0.0.3 – July 2021

HHLib Programming Library
for Custom Software Development

under Linux

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

Table of Contents
1. Introduction.. 3

2. General Notes.. 4

2.1. Warranty and Legal Terms...4

3. Firmware Update... 5

4. Installation of the HHLib Software Package...6

4.1. Requirements... 6

4.2. Libusb Access Permissions..6

4.3. Installing the Library... 7

4.4. Installing the Demo Programs..7

5. The Demo Applications.. 8

5.1. Functional Overview... 8

5.2. The Demo Applications by Programming Language...9

6. Advanced Techniques.. 13

6.1. Using Multiple Devices... 13

6.2. Efficient Data Transfer.. 13

6.3. Working with Very Low Count Rates..14

6.4. Working with Warnings... 14

6.5. Hardware Triggered Measurements...15

6.6. Working in Continuous Mode...15

7. Problems, Tips & Tricks.. 17

7.1. PC Performance Issues... 17

7.2. USB Interface... 17

7.3. Troubleshooting... 17

7.4. Version tracking... 17

7.5. New Linux Versions.. 18

7.6. Software Updates... 18

7.7. Bug Reports and Support... 18

8. Appendix.. 19

8.1. Data Types... 19

8.2. Functions Exported by hhlib.so..20

8.2.1. General Functions.. 20

8.2.2. Device Specific Functions..20

8.2.3. Functions for Use on Initialized Devices...21

8.2.4. Special Functions for TTTR Mode..27

8.2.5. Special Functions for Continuous Mode...28

8.3. Warnings.. 29

Page 2

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

1. Introduction
The HydraHarp 400 is a high-end but easy–to–use TCSPC system with USB interface. Its modular design
makes it scalable and very flexible. The timing circuits allow high measurement rates up to 12.5 Mcounts/s
per channel and provide a time resolution of 1 ps. The input channels are programmable for a wide range of
input signals. They all have programmable Constant Fraction Discriminators (CFD) and a programmable in-
put offset replacing cumbersome cable delays. These specifications qualify the HydraHarp 400 for use with
all common single photon detectors such as Single Photon Avalanche Photodiodes (SPAD), Photo Multiplier
Tubes (PMT), Micro-Channel Photo Multiplier Tubes (MCP–PMT), Hybrid Photodetectors (HPD) and Super-
conducting Nanowire Single Photon Detectors (SNSPD). The time resolution is well matched to these detect-
ors and the overall Instrument Response Function (IRF) will typically not be limited by the HydraHarp elec-
tronics. Similarly inexpensive and easy–to–use diode lasers such as the PDL 800–B with interchangeable
laser heads can be used as an excitation source perfectly matched to the time resolution offered by the de-
tector and the electronics. Overall IRF widths down to 50 ps can be achieved with selected diode lasers and
MCP–PMT detectors. Even 30 ps can be reached with femtosecond lasers. This permits lifetime measure-
ments down to a few picoseconds with deconvolution e.g. via the FluoFit multi–exponential Fluorescence De-
cay Fit Software. For more information on the HydraHarp 400 hardware and software please consult the Hy-
draHarp 400 manual. For details on the method of Time–Correlated Single Photon Counting, please refer to
our Technical Note on TCSPC.

The HydraHarp 400 standard software for Windows provides functions such as the setting of measurement
parameters, display of results, loading and saving of measurement parameters and histogram curves.
Important measurement characteristics such as count rate, count maximum and position, histogram width
(FWHM) are displayed continuously. While these features will meet many of the routine demands, advanced
users may want to include the HydraHarp’s functionality in their own automated measurement systems with
their own software. In particular where the measurement must be interlinked or synchronized with other
processes or instruments this approach may be of interest. For this purpose a programming library is
provided as a Dynamic Link Library (DLL) for Windows. As an alternative, a Linux version of the library is
offered, which is subject of this manual. It is 100% API compatible with the Windows library, so that
applications can be ported very easily.

The shared library ‘hhlib.so’ for Linux supports custom programming in all major programming languages,
notably C / C++, C#, Python, FreePascal/Lazarus, LabVIEW and MATLAB. This manual describes the install-
ation and use of the HydraHarp programming library hhlib.so and explains the associated demo programs.
Please read both this manual and the HydraHarp manual before beginning your own software development
with the library. The HydraHarp 400 is a sophisticated real–time measurement system. In order to work with
the system using the library, sound knowledge in your chosen programming language is required.

Page 3

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

2. General Notes
This version of the HydraHarp 400 programming library is suitable for Linux kernel versions 3.0. and higher,
running on the x64 platform. It uses Libusb so that no kernel driver is required. Note that the library is
provided as a binary object only. The version for 32-bit platforms has been dropped because the major Linux
distributions are no longer supporting it.

This manual assumes that you have read the HydraHarp 400 manual and that you have experience with the
chosen programming language. References to the HydraHarp manual will be made where necessary.

The library supports histogramming mode and both TTTR modes.

Users who own a license for any older version of the library will receive free updates when they are available.
Please check our website for the latest version before you begin programming.

Users upgrading from earlier versions of the HydraHarp 400 library or moving over from the Windows DLL
may need to adapt their programs. Some changes are usually necessary to accommodate new measurement
modes and improvements. However, the required changes are mostly minimal and will be explained in the
manual (especially check section 7 and any notes marked red in section 8.2).

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version checking
in order to avoid incompatibilities. There is a function call tat you can use to retrieve the version number (see
section 8.2). Note that this call returns only the major two digits of the version (e.g. 3.0). The DLL actually
has two further sub–version digits, so that the complete version number has four digits (e.g. 3.0.0.2). They
are shown only in the Windows file properties. These sub–digits help to identify intermediate versions that
may have been released for minor updates or bug fixes. The interface of releases with identical major version
will remain the same.

Please note that the development of Linux is highly dynamic and distributions may vary considerably. This
manual can therefore only try and describe a snapshot valid at the time of writing.

2.1. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi-
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial dam-
ages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or performance
of this software and associated documentation. Demo code is provided ‘as is’ without any warranties as to fit-
ness for any purpose.

License and Copyright

With this product you have purchased a license to use the HydraHarp 400 programming library. You have not
purchased any other rights to the software itself. The software is protected by copyright and intellectual prop-
erty laws. You may not distribute the software to third parties or reverse engineer, decompile or disassemble
the software or part thereof. You may use and modify demo code to create your own software. Original or
modified demo code may be re–distributed, provided that the original disclaimer and copyright notes are not
removed from it. Copyright of this manual and online documentation belongs to PicoQuant GmbH. No parts of
it may be reproduced, translated or transferred to third parties without written permission of Pi -
coQuant GmbH.

HydraHarp is a registered trademark of PicoQuant GmbH.

Other products and corporate names appearing in this manual may or may not be registered trademarks or
subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks.
They are used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Page 4

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

3. Firmware Update
This version of HHLib requires a firmware update of your HydraHarp hardware if the device was purchased
before August 2012 and if it was not yet upgraded. The regular HydraHarp software for Windows can perform
this update. When it is started it will check the firmware version and prompt for an upgrade if necessary.

The firmware update has important consequences that you must observe:

1. After the update you will no longer be able to use any HydraHarp software prior to version 2.0.

2. Custom software you may have written for 1.x file import will require minor adaptions.

3. You will no longer be able to use custom software based on HHLib prior to version 2.0.

4. Custom HHLib-based software you have written for 1.x will require minor adaptions.

5. After the update you may need small CFD adjustments for any known good setup.

6. In case of a power failure or computer crash during the update the device may become in-operational.

7. Reverting to old firmware or repairing a disrupted update requires a return to factory and may incur costs.

Also note: When the firmware update has been performed the device must be switched off an on again in or-
der to become operational with the new software.

Page 5

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

4. Installation of the HHLib Software Package

4.1. Requirements
Supported hardware is at this time solely the “x86-64” CPU platform as found in the majority of recent PCs.
Support for 32-bit platforms has been dropped, for the simple reason that all major Linux distributions are no
longer supporting it. Required is a PC with USB 3.0, at least two CPU cores, 1.5 GHz CPU clock and 4 GB of
memory. For optimal TTTR mode throughput to disk a fast solid state disk is recommended.

The library is designed to run on Linux kernel versions 3.0 or higher. It has been tested with the following dis -
tributions:

Linux Mint 18.1 (kernel 4.4.0)
Ubuntu 18.04 (kernel 4.15.0)
Linux Mint 19.3 (kernel 5.3.0)
Ubuntu 20.04 (kernel 5.4.0)

Using the library requires libusb (https://libusb.info/). The formally required version is 1.0 or higher, tested ver-
sions were 1.0.19, 1.0.20, 1.0.21 and 1.0.23. Libusb is typically installed by default on all major Linux distribu-
tions.

It is recommended to start your work with the HydraHarp 400 by using the standard interactive HydraHarp
data acquisition software under Windows. This should give you a better understanding of the instrument’s
operation before attempting your own programming efforts. It also ensures that your optical/electrical setup is
working.

4.2. Libusb Access Permissions
For device access through libusb, your kernel needs support for the USB filesystem (usbfs) and that
filesystem must be mounted. This is done automatically, if /etc/fstab contains a line like this:

 usbfs /proc/bus/usb usbfs defaults 0 0

This should routinely be the case if you installed any of the tested distributions. The permissions for the
device files used by libusb must be adjusted for user access. Otherwise only root can use the device(s). The
device files are located in /proc/bus/usb/. Any manual change would not be permanent, however. The
permissions will be reset after reboot or re-plugging the device. A much more elegant way of finding the right
files and setting the suitable permissions is by means of hotplugging scripts or udev. Which mechanism you
can use depends on the Linux distribution you have. Most of the recent distributions use udev.

For automated setting of the device file permissions with udev you have to add an entry to the set of rules
files that are contained in /etc/udev/rules.d. Udev processes these files in alphabetical order. The
default file is usually called 50-udev.rules. Don't change this file as it could be overwritten when you
upgrade udev. Instead, put your custom rule for the HydraHarp in a separate file. The contents of this file for
the handling of the current HydraHarp 400 models should be:

ATTR{idVendor}=="0e0d", ATTR{idProduct}=="0004", MODE="666"
ATTR{idVendor}=="0e0d", ATTR{idProduct}=="0009", MODE="666"

A suitable rules file HydraHarp.rules is provided in the folder udev on the distribution media. You can
simply copy it to the /etc/udev/rules.d folder. The install script in the same distribution media folder
does just this. Note that the name of the rules file is important. Each time a device is detected by the udev
system, the files are read in alphabetical order, line by line, until a match is found. Note that different
distributions may use different rule file names for various categories. For instance, Kubuntu organizes the
rules into further files: 20-names.rules, 40-permissions.rules, and 60-symlinks.rules. In

Page 6

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

Fedora they are not separated by those categories, as you can see by studying 50-udev.rules. Instead of
editing the existing files, it is therefore usually recommended to put all of your modifications in a separate file
like 10-udev.rules or 10-local.rules. The low number at the beginning of the file name ensures it will
be processed before the default file. However, later rules that are more general (applying to a whole class of
devices) may later override the desired acecss rights. This is the case for USB devices handled through
Libusb. It is therefore important that you use a rules file for the HydraHarp that gets evaluated after the
general case. The default naming HydraHarp400.rules most likely ensures this but if you see problems
you may want to check.

Note that there are different udev implementations with different command sets. On some distributions you
must reboot to activate changes, on others you can reload rule changes and restart udev with these
commands:

udevcontrol reload_rules
udevstart

4.3. Installing the Library
The library package is distributed as a gzipped tar file. The shared library as such is provided as a binary file.
By default it resides under /usr/local/lib/hh400 or under /usr/local/lib64/hh400 dependent on
the Linux distribution. This is not a strict requirement but it is where the demo programs will look for the library
files and therefore it is recommended to use this location. You can create the directory
/usr/local/lib/hh400 and copy all files from the directory library from the tar archive to
/usr/local/lib/hh400 (hhlib.so, hhlib.h, hhdefin.h and errorcodes.h).

The shell script install in the library distribution directory does the directory creation and installation in
one step. As root, just run it at the command prompt from within the library directory. The install script also
takes care of the peculiarities of some programming tools that expect library names to begin with lib and
the case of some Linux distributions where the x64 library paths use usr/lib/ instead of usr/lib64. This
is done by creating a symbolic link rather than copying the library to different places. Note that the related
conventions seem to vary: lately on Ubuntu 20.04 the library was not found by mono and it was necessary to
use usr/lib/ despite the existence of usr/lib64.

After installing, the library is ready to use and can be tested with the demos provided. On some distributions
you may need to adjust the library path and/or access permissions. If you want to install the library in a
different place and/or if you want to simplify access to the library you can add the chosen path to
/etc/ld.so.conf and/or to the path list in the environment variable LD_LIBRARY_PATH.

Note for SELinux: If upon linking with hhlib.so you get an error “cannot restore segment prot after reloc”
you need to adjust the security settings for hhlib.so. As root you need to run:

chcon -t texrel_shlib_t /usr/local/lib/hh400/hhlib.so

4.4. Installing the Demo Programs
The demos can be installed by simply copying the entire directory demos from the tar archve to a disk
location of your choice. This need not be under the root account but you need to ensure proper file
permissions. While the gcc compiler for the C demos is readily installed in most linux distributions, you will
need to obtain and install Mono, Python, Lazarus, Matlab or LabVIEW for Linux separately if you wish to use
these programming environments.

Page 7

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

5. The Demo Applications

5.1. Functional Overview
Please note that all demo code provided is correct to our best knowledge, however, we must disclaim all war-
ranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than explanatory
purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This is
why most of the demos have a minimalistic user interface and / or must be run from the command line (con-
sole). For the same reason, the measurement parameters are mostly hard–coded and thereby fixed at com-
pile time. It is therefore necessary to change the source code and re–compile the demos in order to run them
in a way that is matched to your individual measurement setup. Running them unmodified may result in use-
less data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc.

For the same reason of simplicity, the demos will always only use the first HydraHarp device they find, al-
though the library can support multiple devices. If you have multiple devices that you want to use simultan -
eously you need to change the code to match your configuration.

There are demos for C/C++, C#, Pascal/Lazarus, Python, LabVIEW and MATLAB. For each of these pro-
gramming languages / systems there are different demo versions for various measurement modes:

Histogramming Mode Demos

These demos show how to use the standard measurement mode for on–board histogramming. These are the
simplest demos and the best starting point for your own experiments. In case of LabVIEW the standard mode
demo is already fairly sophisticated and allows interactive input of most parameters.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits extremely sophisticated data analysis methods, such as single molecule burst
detection, the combination of fluorescence lifetime measurement with FCS and picosecond coincidence cor-
relation or even Fluorescence Lifetime Imaging (FLIM).

The HydraHarp 400 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. The demos by default are set to use T2 mode You
can change this but you need to make sure other relevant settings are adjusted accordingly. For details on
the two modes, please refer to your HydraHarp manual and our Technical Note on TTTR. In TTTR mode it is
also possible to record external TTL signal transitions as markers in the TTTR data stream (see the Hydra-
Harp manual) which is typically used for imaging applications.

Because TTTR mode requires real–time processing and / or real–time storing of data, the TTTR demos are
fairly demanding both in programming skills and computer performance. See the section about TTTR mode in
your HydraHarp manual.

Note that you must not call any of the HH_Setxxx routines while a TTTR measurement is running. The result
would potentially be loss of events in the TTTR data stream. Changing settings during a measurement makes
no sense anyway since it would introduce inconsistency.

Continuous Mode Demos

This measurement mode allows continuous and gapless streaming of short term histograms to the PC. Since
it is an advanced real-time technique, beginners are advised better not to use it. for the same reason, demos
exist only in C and Pascal (Delphi / Lazarus). For details please see the Advanced Techniques section 6.6.

Page 8

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

5.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, Pascal/Lazarus, Python, LabVIEW and MATLAB. For each
of these programming languages / systems there are different demo versions for the measurement modes lis-
ted in the previous section. They are not 100% identical.

This manual explains the special aspects of using the HydraHarp programming library, it does NOT teach you
how to program in the chosen programming language. We strongly recommend that you do not choose a de-
velopment with the HydraHarp programming library as your first attempt at programming. You will require
knowledge on how to call and link shared libraries from your programming language. The ultimate reference
for details about how to use the library is in any case the source code of the demos and the header files of
HHLib (hhlib.h and hhdefin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application and / or your complete computer. The latter is quite unlikely, nev-
ertheless, make sure to backup your data and / or perform your development work on a dedicated machine
that does not contain valuable data. Note that the library is not re–entrant. This means, it cannot be accessed
from multiple, concurrent processes or threads at the same time. All calls must be made sequentially in the
order shown in the demos.

The C / C++ Demos

These demos are provided in the ‘\C’ subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult hhlib.h, hhdefin.h and this manual for reference on the library
calls. The library functions must be declared as extern "C" when used from C++. This is achieved most
elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "hhdefin.h"

 #include "hhlib.h"

}

To test any of the demos, consult the HydraHarp manual for setting up your HydraHarp 400 and establish a
measurement setup that runs correctly and generates useable test data. This is best done with the regular
HydraHarp software for Windows. Compare the settings (notably sync divider, binning and CFD levels) with
those used in the demo and use the values that work in your setup when building and testing the demos.

The C demos are designed to run in a console (terminal window). They need no command line input para-
meters. They create their output files in their current working directory (*.out). The output files will be AS-
CII–readable in case of the standard histogramming demos. For this demo, the ASCII files will contain mul-
tiple columns of integer numbers representing the counts from the 65,536 histogram channels. You can use
any editor or a data visualization program to inspect the ASCII histograms. For the TTTR modes the output is
stored in binary format for performance reasons. The binary files must be read by dedicated programs ac-
cording to the format they were written in. The file read demos provided for the HydraHarp TTTR data files
can be used as a starting point. They cannot be used directly on the demo output because they expect a file
header the demos do not generate. This is intentional in order to keep the HHLib demos focused on the key
issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. You need to change the mode input variable go-
ing into HH_Initialize to a value of 3 if you want T3 mode. Note that you probably also need to adjust the sync
divider and the resolution in this case.

The C# Demos

The C# demos are provided in the ‘Csharp’ subfolder. They have been tested with MS Visual Studio (Win-
dows) as well as with Mono under Windows and Linux. The only difference is the library name, which in prin-
ciple could also be unified, e.g. by means of a symbolic link.

Page 9

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type specific-
ation of the parameters. Not all types are easily portable. Especially C strings require special handling.

With the C# demos you also need to check wether the hardcoded settings are suitable for your actual instru-
ment setup. The demos are designed to run in a console (terminal window). They need no command line in-
put parameters. They create their output files in their current working directory (*.out). The output files will be
ASCII in case of the histogramming mode demos. In TTTR mode the output is stored in binary format for per -
formance reasons. The ASCII files will contain single or multiple columns of integer numbers representing the
counts from the 4096 histogram channels. You can use any editor or a data visualization program to inspect
the ASCII histograms. The binary files must be read by dedicated programs according to the format they were
written in.

The Python Demos

The Python demos are provided in the ‘Python’ subfolder. They have been developed with Python 3 and only
this is officially supported. Python 2 works at the time of this writing but will not be actively maintained.

With the Python demos you also need to check wether the hardcoded settings are suitable for your actual in-
strument setup. The demos are designed to run in a console (terminal window). They need no command line
input parameters. They create their output files in their current working directory (*.out). The output files will
be ASCII in case of the histogramming mode demos. For TTTR mode the output is stored in binary format for
performance reasons. The ASCII files will contain single or multiple columns of integer numbers representing
the counts from the 4096 histogram channels. You can use any editor or a data visualization program to in-
spect the ASCII histograms. The binary files must be read by dedicated programs according to the format
they were written in.

The Pascal / Lazarus Demos

Pascal/Lazarus users refer to the ‘Pascal’ directory. The source code for Delphi (under Windows) and Laz-
arus (Windows or Linux) is the same, differences regarding the library name are handled automatically. The
main code for the Lazarus demo is in the Delphi project file for that demo (*.DPR). Lazarus users use the
*.LPI files that refer to the corresponding *.DPR file.

In order to make the exports of hhlib.so known to your application you have to declare each function in
your Pascal code as ‘external’. This is already prepared in the demo source code in hhlib.pas. Please
check the function parameters of your code against hhlib.h in the demo directory whenever you update to
a new library version.

Lazarus is somewhat picky as to what it accepts as a library name. It expects a name starting with lib. It
also does not easily allow linking with a library that is not in the default path. In order to solve both problems,
the install script for HHLib creates a link making it also appear under the alias /usr/lib/libhh400.so or
/usr/lib64/libhh400.so respectively. This is the path the Lazarus demos use for accessing hhlib.so.
Another complication arising with Lazarus is that it does not always by default know how to link in the C
runtime library needed by hhlib.so. This is why you must explicitly enter it in the Compiler Options. Under
Linking in the field Options you should enter something like /lib/libgcc_s.so.1 (or /lib64/
libgcc_s.so.1 for x64) and tick the box "Pass options to linker...". The loction of libgcc_s.so.1 may
be different in some recent Linux distribution so you may need to search for libgcc_s.so.1 and set the
path accordingly.

The Lazarus demos are also designed to run in a console (terminal window). They need no command line in-
put parameters. They create output files in their current working directory. The output files will be ASCII in
case of the histogramming demo. In TTTR mode the output is stored in binary format for performance reas-
ons. You can use any data visualization program to inspect the ASCII histograms. The binary files must be
read by dedicated programs according to the format they were written in. The file read demos provided for
the HydraHarp TTTR data files can be used as a starting point. They cannot be used directly on the demo
output because they expect a file header the demos do not generate. This is intentional in order to keep the
HHLib demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into HH_Initialize to a value of 3 if you want
T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suitable
range (resolution).

Page 10

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

The LabVIEW Demos

The LabVIEW demo VIs are provided in the src sub-folder inside the LabVIEW20xx folders. The correct
library path is selected automatically, provided that the library is is installed in the designated folders (i.e.
usr/local/lib or usr/local/lib64 respectively). The demo code was created with LabVIEW 2020, for
backward compatibility the source code was also converted to LabVIEW 2010.

Program specific SubVIs and type-definitions used by the demos are organized in corresponding sub-folders
inside the demo folder (SubVIs, Types). General helper functions and type-definitions as well as
encapsulating libraries (*.llb) can be found in the _lib folder (containing further sub-folders) inside the
demo folder. In order to facilitate the usage of the DLL functions additional VIs called
HH_AllDllFunctions_xxx.vi have been included. These VIs are not meant to be executed but should
only give a structured overview of all available DLL functions and their functional context.

In addition to the LabVIEW library used by the demos (hhlib_x86_x64_UIThread.llb) a second library
is included allowing the DLL calls to be executed in any thread of LabVIEWs threading engine
(hhlib_x86_x64_AnyThread.llb). This library is intended for time critical applications where user
actions on the Front Panel (like e.g. resizing or moving) must not affect the execution of a data acquisition
thread containing these DLL functions (please refer to “Multitasking in LabVIEW”:
http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_la
bview/). When using this library you have to make sure that all DLL functions are called in a sequential
order to avoid errors or even program crashes. Also be aware that DLL functions in
hhlib_x86_x64_AnyThread.llb have the same names like in hhlib_x86_x64_UIThread.llb and
opening both libraries at the same time would lead to name conflicts. Therefore only experienced users
should use hhlib_x86_x64_AnyThread.llb.

The first demo (1_SimpleDemo_HHHisto.vi) is a very simple one demonstrating the basic usage and
calling sequence of the provided SubVIs encapsulating the DLL functionality, which are assembled inside the
LabVIEW library hhlib_x86_x64_UIThread.llb (in the folder _lib/PQ/HydraHarp). The demo starts
by calling some of these library functions to setup the hardware in a defined state and continues with a
measurement in histogramming mode by calling the corresponding library functions inside a while-loop.
Histograms and count rates for all available hardware channels are displayed on the Front Panel in a
Waveform Graph (you might have to select AutoScale for axes) and numeric indicators, respectively. The
measurement is stopped if either the acquisition time has expired, if an error occurs (which is reported in the
error out cluster), if an overflow occurs or if the user hits the STOP button.

The second demo for histogramming mode (2_AdvancedDemo_HHHisto.vi) is a more sophisticated one
allowing the user to control all hardware settings “on the fly”, i.e. to change settings like acqisition time (Acqu.
ms), resolution (Resol. ms), offset (Offset ns in Histogram frame), number of histogram bins (Num Bins), etc.
before, after or while running a measurement. In contrast to the first demo settings for each available channel
(including the Sync channel) can be changed individually (Settings button) and consecutive measurements
can be carried out without leaving the program (Run button; changes to Stop after pressing). Additionally,
measurements can be done either as “single shot” or in a continuous manner (Conti. Checkbox). Various
information are provided on the Front Panel like histograms and count rates for each available (and enabled)
channel as Waveform Graphs (you might have to select AutoScale for axes), Sync rate, readout rate, total
counts and status information in the status bar, etc. In case an error occurs a popup window informs the user
about that error and the program is stopped.
The program structure of this demo is based upon the National Instruments recommendation for queued
message and event handlers for single thread applications. Some comments inside the source code should
help the user to get an overview of the program and to facilitate the development of customized extensions.

The third demo (3_AdvancedDemo_HHT3.vi) is the most advanced one and demonstrates the usage of
T3 mode. The Front Panel resembles the second demo but in addition to the histogram display a second
Waveform Graph (you might have to select AutoScale for axes) also displays a time chart of the incoming
photons for each available (and enabled) channel with a time resolution depending on the Sync rate and the
entry in the Resol. ms control inside the Time Trace frame (which can be set in multiples of two). In contrast
to the second demo there is no control to set an overflow level or the number of histogram bins, which is fixed
to 32.768 in T3 mode. Also in addition to the acquisition time (called T3Acq. ms in this demo; set to
360.000.000 ms = 100 h by default) a second time (Int.Time ms in Histogram frame) can be set which
controls the integration time for accumulating a histogram.
The program structure of this demo extends that of the second demo by extensive use of LabVIEW type-

Page 11

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

definitions and two additional threads: a data processing thread (HH_DataProcThread.vi) and a
visualization thread. The communication between these threads is accomplished by LabVIEW queues.
Thereby the FiFo read function (case ReadFiFo in UIThread) can be called as fast as possible without any
additional latencies from data processing workload.
Some comments inside the source code should help the user to get an overview of the program and to
facilitate the development of customized extensions. Please note that due to performance reasons some of
the SubVIs inside HH_DataProcThread.vi have been inlined so that no debugging is possible on these
SubVIs.
This demo can also be used as a starting point to calculate the absolute arrival times of photons (e.g. for
correlation analysis). To achieve this one has to multiply the sync event ‘numsync’ with the known sync period
and add ‘dtime’ multiplied with the channel resolution (refer to SubVIs HH_ProcData.vi and
ProcessTTRecHHT3.vi within the SubVI HH_DataProcThread.vi).

For example:
Sync frequency: e.g. 10 MHz
=> sync period: 100 ns
Number of sync event (i.e. value of 'numsync'): e.g. 1000
=> time of sync event: 1000 x 100 ns = 100000 ns = 100000000 ps
Resolution of channels: e.g. 4 ps (in case of binning = 4)
=> time difference between sync event and detection of photon: ‘dtime’ x 4 ps
Arrival time of detected photon
=> 100000000 ps + (‘dtime’ x 4 ps)

The MATLAB Demos

The MATLAB demos are provided in the MATLAB directory. They are contained in .m files. You need to have
a MATLAB version that supports the calllib function. The earliest version we have tested in this regard is
MATLAB 7.3 (under Windows) but any version from 6.5 should work. Be very careful about the header file
name specified in 'loadlibrary'. This name is case sensitive and a wrong spelling will lead to an apparently
successful load but later no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for performance reasons. You
can use any data visualization program to inspect the ASCII histograms. The binary files must be read by
dedicated programs according to the format they were written in. The file read demos provided for the Hydra-
Harp TTTR data files can be used as a starting point. They cannot be used directly on the demo output be-
cause they expect a file header the demos do not generate. This is intentional in order to keep the HHLib
demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into HH_Initialize to a value of 3 if you want
T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suitable
range (resolution).

Page 12

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

6. Advanced Techniques

6.1. Using Multiple Devices
The library is designed to work with multiple HydraHarp devices (up to 8). The demos always use the first
device found. If you have more than one HydraHarp and you want to use them together you need to modify
the code accordingly. At the API level of HHLib the devices are distinguished by a device index (0 .. 7). The
device order corresponds to the order Libusb enumerates the devices. This can be somewhat unpredictable.
It may therefore be difficult to know which physical device corresponds to the given device index. In order to
solve this problem, the library routine HH_OpenDevice provides a second argument through which you can
retrieve the serial number of the physical device at the given device index. Similarly you can use the library
routine HH_GetSerialNumber any time later on a device you have successfully opened and initialized. The
serial number of a physical HydraHarp device can be found at the back of the housing. It is a 8 digit number
starting with 0100. The leading zero will not be shown in the serial number strings retrieved through
HH_OpenDevice or HH_GetSerialNumber.

It is important to note that the list of devices may have gaps. If you have e.g. two HydraHarps you cannot as-
sume to always find device 0 and 1. They may as well appear e.g. at device index 2 and 4 or any other in -
dex. Such gaps can be due to other PicoQuant devices (e.g. a Sepia II laser device) occupying some of the
indices, as well as due to repeated unplugging / replugging of devices. The only thing you can rely on is that a
device you hold open remains at the same index until you close or unplug it.

Note that an attempt at opening a device that is currently used by another process will result in the error code
ERROR_DEVICE_BUSY being returned from HH_OpenDevice.

As outlined above, if you have more than one HydraHarp and you want to use them together you need to
modify the demo code accordingly. This requires briefly the following steps: Take a look at the demo code
where the loop for opening the device(s) is. In most of the demos all the available devices are opened. You
may want to extend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs.

By means of the device indices you picked out you can then extend the rest of the program so that every ac-
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap -
proach. It does no harm if you close a device that you haven't opened.

6.2. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the HydraHarp 400 uses USB bulk transfers. This is supported by
the PC hardware that can transfer data to the host memory without much help of the CPU. For the HydraHarp
this permits data throughput as high as 9 Mcps (USB 2.0) or even 40 Mcps (USB 3.0) and leaves time for the
host to perform other useful things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function HH_ReadFiFo that
accepts a buffer address where the data is to be placed, and a transfer block size. This block size is critical
for efficient transfers. The larger the block size, the better the transfer efficiency. This is because setting up a
transfer costs some fixed amount of time, independent of the block size. The maximum transfer block size is
131,072 (128k event records). However, it may not under all circumsances be ideal to use the maximum size,
e.g. with respect to cache usage.

As noted above, the transfer is implemented efficiently without using the CPU excessively. Nevertheless, as-
suming large block sizes, the transfer takes some time. The operating system therefore gives the unused
CPU time to other processes or threads, i.e., it waits for completion of the transfer without burning CPU time.
This wait time is what can also be used for doing ‘useful things’ in terms of any desired data processing or
storing within your own application. The best way of doing this is to use multithreading. In this case you

Page 13

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

design your program with two threads, one for collecting data (i.e. working with HH_ReadFiFo) and another
for processing or storing the data. Multiprocessor systems can benefit from this technique even more. Of
course you need to provide an appropriate data queue between the two threads and the means of thread
synchronization. Thread priorities are another issue to be considered. Finally, if your program has a graphic
user interface you may need a third thread to respond to user actions reasonably fast. Again, this is an ad -
vanced technique and it cannot be demonstrated in detail here. Greatest care must be taken not to access
HHLib from different threads without strict control of mutual exclusion and maintaining the right sequence of
function calls. However, the technique allows throughput improvements of 50..100% and advanced program-
mers may want to use it. It might be interesting to note that this is how TTTR mode is implemented in the reg -
ular PicoHarp software for Windows, where sustained count rates over 9 millions of counts/sec (to disk) can
be achieved with the USB 2.0 HydraHarp and even 40 Mcps with the USB 3.0 version.

When working with multiple HydraHarp devices, the overall USB throughput is limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without using hubs. If you install additional USB controller cards you should prefer
PCI–express models. Traditional PCI can become a bottleneck in itself. However, modern mainboards often
have multiple USB host controllers, so you may not even need extra controller cards. In case of using mul-
tiple devices it is also beneficial for overall throughput if you use multi–threading in order to fetch and store
data from the individual devices in parallel. Again, re–entrance issues must be observed carefully in this
case, at least for all calls accessing the same device.

6.3. Working with Very Low Count Rates
As noted above, the transfer block size is critical for efficient transfers. The larger the block size, the better
the transfer efficiency. This is because setting up a transfer costs some fixed amount of time, independent of
the block size. It would therefore seem reasonable to always use the largest possible size. However, it may
not under all circumstances be ideal to use the maximum size. A large block size takes longer to fill. If you
use an early HydraHarp model with USB 2.0 and the count rates in your experiment are very low, it may be
better to use a smaller block size. This ensures that the transfer function returns more promptly. The Hydra-
Harp model with USB 2.0 has a “watchdog” timer that terminates large transfer requests prematurely so that
they do not wait forever if new data is coming in very slowly or not at all. The timeout period is approximately
10 ms. HH_ReadFiFo may therefore return less than requested (possibly even zero). This helps to avoid
complete stalls even if the maximum transfer size is used with low or zero count rates. However, for fine tun-
ing of your application may still be of interest to experiment with smaller block sizes.

The USB 3.0 model of the HydraHarp works slightly differently. It transfers data in chunks of 128 records and
HH_ReadFiFo will return immediately after the number of complete chunks of 128 records that were avail -
able in the FiFo and can fit in the buffer have been transferred. Remainders smaller than the chunk size are
only transferred when no complete chunks are in the FiFo. Due to this different concept of operation of the
USB 3.0 model it is therefore not necessary to worry about the transfer block size and using the largest is al -
ways fine unless you care about subtle cache optimizations.

Regardless of the hardware model the requested block size must be a multiple of 128 records. The smallest
is therefore 128.

6.4. Working with Warnings
The HydraHarp programming library provides routines for obtaining and interpreting warnings about critical
measurement conditions. The mechanism and warning criteria are the same as those used in the regular Hy-
draHarp software. In order to obtain and use these warnings also in your custom software you may want to
use the library routine HH_GetWarnings. This may help inexperienced users to notice possible mistakes be-
fore stating a measurement or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that HH_GetWarnings does not obtain the count rates on its own, be-
cause the corresponding calls take some time and might waste too much processing time. It is therefore nec-
essary that HH_GetSyncRate as well as HH_GetCountRate (for all channels) have been called before
HH_GetWarnings is called. Since most interactive measurement software periodically retrieves the rates
anyhow, this is not a serious complication.

The routine HH_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to translate
this into readable information you can use HH_GetWarningsText. Before passing the bit field into HH_Get-
WarningsText you can mask out individual warnings by means of the bit masks defined in hhdefin.h.

Page 14

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

6.5. Hardware Triggered Measurements
This measurement scheme requires a HydraHarp 2.0, i.e. Gateware 2.x. It works essentially like regular his-
togramming mode but it allows to start and stop the acquisition by means of external TTL signals. Since it is
an advanced real-time technique, beginners are advised better not to use it for their first exercises. For the
same reason, demos exist only in C. Before using this scheme, also consider when it is useful to do so. TTTR
mode is usually the most efficient way of retrieving the maximum information on photon dynamics. By means
of marker inputs the photon events can be precisely assigned to complex external event scenarios. Also con-
sider using continuous mode (see section 6.6) if you care about repeated and gapless histogram recoding.

The HydraHarp's data acquisition can be controlled in various ways. Default is the HydraHarp's internal CTC
(counter timer circuit). In that case the histograms will take the duration set by the tacq parameter passed to
HH_StartMeas. The other way of controlling the histogram boundaries (in time) is by external TTL signals
fed to the control input pins C1 and C2. In that case it is possible to have the acquisition started and stopped
when specific signals occur. It is also possible to combine external starting with stopping through the internal
CTC. The exact behaviour is controlled by the parameters supplied to the call of HH_SetMeasControl. De-
pendent on the parameter meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until CTC expires. The duration
is set by the tacq parameter passed to
HH_StartMeas.

MEASCTRL_C1_GATE 1 Histograms are collected for the period where C1 is
active. This can be the logical high or low period
dependent on the value supplied to the parameter
startedge.

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to HH_StartMeas.

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the parameters startedge and
stopedge.

The symbolic constants shown above are defined in hhdefin.h. There are also symbolic constants for the
parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to detect
the beginning and end of a measurement. Be aware that the speed of you computer and the delays intro-
duced by the operating system's task switching impose some limits on how fast you can run this scheme.

6.6. Working in Continuous Mode
This measurement mode works essentially like regular histogramming mode but it allows continuous and
gapless streaming of short term histograms to the PC. Since it is an advanced real-time technique, beginners
are advised better not to use it. for the same reason, the corresponding demos exist only in C and Pascal.

Before using this mode, consider when it is useful to do so. Remember that TTTR mode is usually the most
efficient way of retrieving the maximum information on photon dynamics. Only when the expected count rates
become very high and when the individual photon timing relations are not of interest it may be advisable to
switch to continuous mode.

Page 15

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

The temporal boundaries of the individual histograms in a continuous mode stream can be controlled in two
different ways. One is by the HydraHarp's internal CTC (counter timer circuit). In that case the histograms will
take the duration set by the tacq parameter passed to HH_StartMeas and they will line up seamlessly in
time. The other way of controlling the individual histogram boundaries (in time) is by external TTL signals fed
to the connectors C1 and C2. In that case it is possible to have new histograms started and stopped when
specific signals occur. It is also possible to combine external starting with stopping through the internal CTC.
Details are cotrolled by the parameters supplied to HH_SetMeasControl. Dependent on the parameter
meascontrol the folowing modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_CONT_C1_GATED 4 Histograms are collected for each period where C1
is active. This can be the logical high or low periods
dependent on the value supplied to the parameter
startedge.

MEASCTRL_CONT_C1_START_CTC_STOP 5 Histogram collection is started by a transition on C1
and stopped by expiration of the internal CTC.
Which transition actually triggers the start is given
by the value supplied to the parameter startedge.
Histogram duration is set by the tacq parameter
passed to HH_StartMeas. The current histogram
ends if a new trigger occurs before the CTC has
expired.

MEASCTRL_CONT_CTC_RESTART 6 Histogram collection is started and stopped
exclusively by the internal CTC. Consecutive
histograms will line up without gaps. Histogram
duration is set by the tacq parameter passed to
HH_StartMeas.

The symbolic constants shown above are defined in hhdefin.h. You will find that there are more symbolic
constants with values 0..3 not shown in the table above. These are reserved for use with regular histogram-
ing mode. There are also symbolic constants for the parameters controlling the active edges (rising/falling).
Regarding HH_StartMeas only the parameter startedge is meaningful in continuous mode. The parame-
ter stopedge is only used in regular histograming mode.

In continuous mode each histogram is retrieved as a structured data block via HH_GetContModeBlock.
This data block has a small header that provides a number of the histogram, starting time and duration of that
histogram in nanoseconds, First occurence time of each marker signal, and occurence count of each marker
signal. Please see the HydraHarp manual for more information on markers (normally used in TTTR mode)
and study the source code of the continuous mode demos for details on the continuous mode data block
structure. After the header there is the actual histogram data and after that follows a sum of all counts in that
histogram. The latter is useful in applications where mere intensity dynamics are of interest.

One complication in using these data structures is that the size of the histograms depends both on the cho-
sen number of time bins and on the number of active input channels. The size of the data blocks is therefore
not fixed. The demo code shows how to deal with this. Note that the structure of the continuous mode block
header has slightly changed between HHLib versions 2.x and 3.x.

Page 16

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

7. Problems, Tips & Tricks

7.1. PC Performance Issues
Performance issues with HHLib are the same as with the standard HydraHarp software. The HydraHarp
device and its software interface are a complex real–time measurement system demanding appropriate per-
formance both from the host PC and the operating system. This is why a fairly modern CPU and sufficient
memory are required. At least a 1.5 GHz dual core processor, 4 GB of memory and a fast hard disk are re-
commended. However, as long as you do not use TTTR or continuous mode, these issues should not be of
severe impact. If you do intend to use TTTR or continuous mode with streaming to disk you should also have
a fast modern hard disk, ideally a solid state disk.

7.2. USB Interface
In order to deliver maximum throughput, the HydraHarp 400 uses state–of–the–art USB bulk transfers. This is
why the HydraHarp must rely on having a USB host interface matched to the device speed (USB 2.0 or
USB 3.0). USB host controllers of modern PCs are usually integrated on the mainboard. For older PCs they
may be upgraded as plugin cards. Throughput is then usually limited by the host controller, not the Hydra-
Harp. Do not run other bandwidth demanding devices on the same USB interface when working with the Hy-
draHarp. USB cables must be qualified for the USB speed of your HydraHarp model (at least USB 2.0). Older
and cheap cables often do not meed this requirement and can lead to errors and malfunction. Similarly, many
PCs have poor internal USB cabling, so that USB sockets at the front of the PC are often unreliable. Obscure
USB errors may also result from subtle damages to USB cables, caused e.g. by sharply bending or crushing
them. Worn out and dirty cable connectors are another frequent source of trouble.

7.3. Troubleshooting
Troubleshooting should begin by testing your hardware and experiment setup. This is best accomplished by
the standard HydraHarp software for Windows (supplied by PicoQuant). Only if this is working properly you
should start work with the library under Linux. If there are problems even with the standard software, please
consult the HydraHarp manual for detailed troubleshooting advice.

Under Linux the library will access the PicoHarp device through libusb 0.1.12 or the combination of Libusb 1.0
and Libusb-Compat (see http://libusb.sourceforge.net/). You need to make sure that libusb has been installed
correctly. Normally this is readily provided by recent Linux distributions. You can use lsusb to check if the
device has been detected and is accessible. Please consult the PicoHarp manual for hardware related prob-
lem solutions. Note that an attempt at opening a device that is currently used by another process will result in
the error code ERROR_DEVICE_BUSY being returned from PH_OpenDevice. PH_OpenDevice may also fail
to open the device due to insufficient access rights (permissions). This appears as if the device is not present
at all. In this case look at the output of lsusb. The HydraHarp model with USB 2.0 interface should appear
with its vendor ID 0E0D and the device ID 0004. The USB 3.0 model should appear with vendor ID 0E0D and
device ID 0009. If the device is actually listed there and you still cannot open it then you probably have not
set the right permissions. See section 4.2 to fix this.

As a next step, try the readily compiled demos supplied with the library. For first tests take the standard histo -
gramming demos. If this is working, your own programs should work as well. Note that the hard coded set-
tings may not be compatible with your experimental setup. Then the pre–compiled demo may not work as ex-
pected. Only the advanced LabVIEW demos allow to enter most of the settings interactively.

7.4. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel-
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and library. In any case your software should issue a warning if it
detects versions other than those it was tested with.

Page 17

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

7.5. New Linux Versions
The library has good chances to remain compatible with upcoming Linux versions. This is because the inter -
face of libusb is likely to remain unchanged, even if libusb changes internally. You can even revert to an
earlier version if necessary. Of course we will also try to catch up with new developments that might break
compatibility, so that we will provide upgrades when necessary. However, note that this is work carried out
voluntarily and implies no warranties for future support.

7.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check the product website for the latest version before investing time in pro-
gramming.

7.7. Bug Reports and Support
The HydraHarp 400 TCSPC system has gone through several iterations of hardware and software improve-
ment as well as extensive testing. Nevertheless, it is a fairly challenging development and some glitches may
still occur under the myriads of possible PC configurations and application circumstances. We therefore
would like to offer you our support in any case of problems with the system. Do not hesitate to contact your
sales representative or PicoQuant in case of difficulties with your HydraHarp or the programming library.
However, please note that the Linux library is a free supplement to the Windows version and its development
is work carried out voluntarily by individual Linux enthusiasts. It therefore implies no warranties for other than
voluntary support.

If you should observe errors or bugs caused by the HydraHarp system please try to find a reproducible error
situation. Email a detailed description of the problem and all relevant circumstances, especially other hard-
ware installed in your PC, to support@picoquant.com. Also include a listing of your PC configuration and at-
tach it to your error report. Your feedback will help us to improve the product and documentation.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications. The simplest
way of doing this in case of the HydraHarp 400 is citing the original publication about the instrument 1. At our
Website we also maintain a large bibliography of publications referring to our instruments. It may serve as a
reference for you and other potential users. See http://www.picoquant.com/scientific/references. Please sub-
mit your publications for addition to this list.

1 Wahl M., Rahn H.-J., Röhlicke T., Kell G., Nettels D., Hillger F., Schuler B., Erdmann R.: Scalable time-
correlated photon counting system with multiple independent input channels. Review of Scientific
Instruments, Vol.79, 123113 (2008)

Page 18

http://www.picoquant.com/scientific/references
mailto://support@picoquant.com

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

8. Appendix

8.1. Data Types
The HydraHarp programming library is written in C and its data types correspond to C / C++ data types with
bit-widths as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note that on platforms other than Intel x86 type of machines byte swapping may occur when the HydraHarp
data files are read there for further processing. We recommend using the native x86 environment consist -
ently.

The HydraHarp software distribution pack includes a set of demo programs (source code) for various pro -
gramming languages to show how access to HydraHarp data files can be implemented. These demos also
show how to process TTTR records and the related code fragments can be used for real-time processing of
freshly collected data as well. They will be installed in the subfolder \Filedemo under the chosen installa-
tion folder of the HydraHarp software (not that of the programming library).

Page 19

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

8.2. Functions Exported by hhlib.so
See hhdefin.h for predefined constants given in capital letters here. Return values < 0 denote errors. See
errorcodes.h for the error codes. Note, that HHLib can control more than one HydraHarp simultan-
eously. For that reason all device specific functions (i.e. the functions from section 8.2.2 on) take a device in-
dex as the first argument. Note that functions taking a channel number as an argument expect the channels
enumerated 0..N-1 while the graphical HydraHarp software as well as the front panel enumerates the chan-
nels 1..N. This is due to internal data structures and consistency with earlier products.

8.2.1. General Functions
These functions work independent from any device.

int HH_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a HH_xxx function call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

int HH_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: This is the only function you may call before HH_Initialize. Use it to ensure compatibility of the library with your own applica-
tion.

8.2.2. Device Specific Functions
All functions below are device specific and require a device index.

int HH_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int HH_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int HH_Initialize (int devidx, int mode, int refsource);

arguments: devidx: device index 0..7
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode
8 = continuous mode

Page 20

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

refsource: reference clock to use
0 = internal
1 = external

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the
measurement mode you select here. See the HydraHarp manual for more information on the measurement modes.

8.2.3. Functions for Use on Initialized Devices
All functions below can only be used after HH_Initialize was successfully called.

int HH_GetHardwareInfo (int devidx, char* model, char* partno, char* version); // CHANGED IN V3.0

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 16 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int HH_GetFeatures (int devidx, int* features); // NEW SINCE V3.0

arguments: devidx: device index 0..7
features: pointer to a buffer for an integer (actually a bit pattern)

return value: =0 success
<0 error

Note: You do not really need this function. It is mainly for integration in PicoQuant system software such as SymPhoTime in order
to figure out what capabilities the device has. If you want it anyway, use the bit masks from hhdefin.h to evaluate individual
bits in the pattern.

int HH_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int HH_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the maximum allowed binning steps

return value: =0 success
<0 error

Note: Use the value returned in binsteps as maximum value for the HH_SetBinning function.

int HH_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..7
nchannels: pointer to an integer,

returns the number of installed input channels

return value: =0 success
<0 error

Page 21

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_GetNumOfModules (int devidx, int* nummod);

arguments: devidx: device index 0..7
nummod: pointer to an integer,

returns the number of installed modules

return value: =0 success
<0 error

Note: This routine is primarily for maintenance and service purposes. It will typically not be needed by end user applications.

int HH_GetModuleInfo (int devidx, int modidx, int* modelcode, int* versioncode);

arguments: devidx: device index 0..7
modidx: module index 0..5
modelcode: pointer to an integer,

returns the model of the module identified by modidx
versioncode: pointer to an integer,

 returns the versioncode of the module identified by modidx

return value: =0 success
<0 error

Note: This routine is primarily for maintenance and service purposes. It will typically not be needed by end user applications.

int HH_GetModuleIndex (int devidx, int channel, int* modidx);

arguments: devidx: device index 0..7
channel: index of the identifying input channel 0..nchannels-1
modidx: pointer to an integer,

returns the index of the module where the input channel
given by channel resides.

return value: =0 success
<0 error

Note: This routine is primarily for maintenance and service purposes. It will typically not be needed by end user applications. The
maximum input channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().

int HH_GetHardwareDebugInfo(int devidx, char *debuginfo); // NEW SINCE V3.0

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 65536 characters

return value: =0 success
<0 error

Note: Use this call to obtain debug information for support enquiries if you detect FLAG_SYSERROR or HH_ERROR_STATUS_FAIL.

int HH_Calibrate (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

int HH_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values ≤ 12.5 MHz. It should only be used with sync
sources of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly lar -
ger timing jitter. The readings obtained with HH_GetCountRate are internally corrected for the divider setting and deliver the
external (undivided) rate. The sync divider should not be changed while a measurement is running.

Page 22

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_SetSyncCFD (int devidx, int level, int zerox);

arguments: devidx: device index 0..7
level: CFD discriminator level in millivolts

minimum = DISCRMIN
maximum = DISCRMAX

zerox: CFD zero cross level in millivolts
minimum = ZCMIN
maximum = ZCMAX

return value: =0 success
<0 error

Note: The values are given as a positive numbers although the electrical signals are actually negative.
After a firmware update to version 2.0 the CFD settings may require slight adjustments.

int HH_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..7
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

int HH_SetInputCFD (int devidx, int channel, int level, int zerox);

arguments: devidx: device index 0..7
channel: input channel index 0..7
level: CFD discriminator level in millivolts

minimum = DISCRMIN
maximum = DISCRMAX

zerox: CFD zero cross level in millivolts
minimum = ZCMIN
maximum = ZCMAX

return value: =0 success
<0 error

Note: The values are given as a positive numbers although the electrical signals are actually negative.
The maximum input channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().
After a firmware update to version 2.0 the CFD settings may require slight adjustments.

int HH_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: The maximum input channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().

int HH_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
enable: desired enable state of the input channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().
Upon initialization all channels are enabled. You only need to call this routine if you wish to disable some channels.

Page 23

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Note: This setting determines if a measurement run will stop if any channel reaches the maximum set by stopcount. If
stop_ofl is 0 the measurement will continue but counts above STOPCNTMAX in any bin will be clipped.

int HH_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..7
binning: measurement binning code

minimum = 0 (default = smallest, i.e. base resolution)
maximum = (MAXBINSTEPS-1) (largest)

return value: =0 success
<0 error

Note: the binning code corresponds to repeated doubling, i.e.

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int HH_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: histogram time offset in ns

minimum = OFFSETMIN (0, default)
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: This offset must not be confused with the input offsets in each channel that act like a cable delay. In contrast, the offset here
is subtracted from each start–stop measurement before it is used to either address the histogram channel to be incremented
(in histogramming mode) or to be stored in a T3 mode record. The offset therefore has no effect in T2 mode and it has no ef-
fect on the relative timing of laser pulses and photon events. It merely shifts the region of interest where time difference data
is to be collected. This can be useful e.g. in time-of-flight measurements where only a small time span at the far end of the
range is of interest.

int HH_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..7
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE (default)

actuallen: pointer to an integer,
returns the current length (time bin count) of histograms
calculated as 1024 * (2^lencode)

return value: =0 success
<0 error

Note: Upon initialization the maximum length is set. You only need to call this routine if you want a shorter length.

int HH_ClearHistMem (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Page 24

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..7
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP
4 = MEASCTRL_CONT_C1_GATED
5 = MEASCTRL_CONT_C1_START_CTC_STOP
6 = MEASCTRL_CONT_CTC_RESTART

startedge: edge selection code
0 = falling
1 = rising

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

int HH_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

int HH_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Can also be used before the acquisition time expires.

int HH_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..7
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition time still running
1 = acquisition time has ended

return value: =0 success
<0 error

int HH_GetHistogram (int devidx, unsigned int *chcount, int channel, int clear);

arguments: devidx: device index 0..7
chcount pointer to an array of at least actuallen double words (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1
clear denotes the action upon completing the reading process

0 = keeps the histogram in the acquisition buffer
1 = clears the acquisition buffer

return value: =0 success
<0 error

Note: The histogram buffer size actuallen must correspond to the value obtained through HH_SetHistoLen().
The maximum input channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().

Page 25

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps,

return value: =0 success
<0 error

int HH_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..7
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

int HH_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..7
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after HH_Initialize or HH_SetSyncDivider to get a stable rate meter reading.
Similarly, wait at least 100 ms to get a new reading. This is the gate time of the counters.
The maximum input channel index must correspond to nchannels-1 as obtained through HH_GetNumOfInputChannels().

int HH_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..7
flags: pointer to an integer

returns current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in hhdefin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.

int HH_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..7
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: This can be used while a measurement is running but also after it has stopped.

int HH_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..7
warnings pointer to an integer

returns warnings, bitwise encoded (see phdefin.h)

return value: =0 success
<0 error

note: You must call HH_GetCoutRate and HH_GetCoutRate for all channels prior to this call.

Page 26

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters
warnings: integer bitfield obtained from HH_GetWarnings

return value: =0 success
<0 error

int HH_GetSyncPeriod (int devidx, double* period); // NEW SINCE V3.0

arguments: devidx: device index 0..7
period: pointer to a double precision float (64 bit)

returning the sync period in ps

return value: =0 success
<0 error

note: This call only gives meaningful results while a measurement is running and after two sync periods have elapsed.
The return value is undefined in all other cases. Accuracy is determined by single shot jitter and crystal tolerances.

8.2.4. Special Functions for TTTR Mode

int HH_ReadFiFo (int devidx, unsigned int* buffer, int count, int* nactual);

arguments: devidx: device index 0..7
buffer: pointer to an array of count double words (32bit)

where the TTTR data can be stored
must provide space for at least 128 records

count: number of TTTR records to be fetched
must be a multiple of 128, max = size of buffer,
absolute max = TTREADMAX

nactual: pointer to an integer
returns the number of TTTR records received

return value: =0 success
<0 error

Note: CPU time during wait for completion will be yielded to other processes / threads.
Buffer must not be accessed until the function returns.
USB 2.0 devices: Call will return after a timeout period of ~10 ms, if not all data could be fetched.
USB 3.0 devices: The transfer operates in chunks of 128 records. The call will return after the number of complete chunks of
128 records that were available in the FiFo and can fit in the buffer have been transferred. Remainders smaller than the
chunk size are only transferred when no complete chunks are in the FiFo.

int HH_SetMarkerEdges (int devidx, int me0, int me1, int me2, int me3);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

int HH_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..7
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Page 27

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

int HH_SetMarkerHoldoffTime (int devidx, int holdofftime); // NEW SINCE V3.0

arguments: devidx: device index 0..7
holdofftime hold-off time in ns (0..HOLDOFFMAX)

return value: =0 success
<0 error

Note: This setting is not normally required but it can be used to deal with glitches on the marker lines. Markers following a previous
marker within the hold-off time will be suppressed. Note that the actual hold-off time is only approximated to about ±8ns.

8.2.5. Special Functions for Continuous Mode

int HH_GetContModeBlock (int devidx, void* buffer, int* nbytesreceived); // CHANGED SINCE V3.0

arguments: devidx: device index 0..7
buffer: pointer to a buffer where the data will be stored
nbytesreceived: pointer to an integer,

returns the number of bytes received

return value: =0 success
<0 error

Note: Required buffer size and data structure depends on the number of active input channels and histogram bins.
Allocate MAXCONTMODEBUFLEN bytes to be on the safe side. The data structure changed slightly in v.3.0 to provide in-
formation on the number of active input channels and histogram bins. This simplifies accessing the data. See the C demo
code.

Page 28

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

8.3. Warnings
The following is related to the warnings (possibly) generated by the library routine HH_GetWarnings. The
mechanism and warning criteria are the same as those used in the regular HydraHarp software and depend
on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that HH_GetCoutrate has been called for
all channels before HH_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur in
all measurement modes. Also, count rate limits for a specific warning may be different in different modes. The
following table lists the possible warnings in the three measurement modes and gives some explanation as to
their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No counts are detected at the sync input. In histogramming
and T3 mode this is crucial and the measurement will not
work without this signal.

√ √

WARNING_SYNC_RATE_TOO_LOW

this warning should not occur with current software and firm-
ware. It is kept in this list for backward compatibility only.

Note, however, that there actually is a minimum sync rate of
about 0.25 Hz in histogramming and T3 mode. Due to the
lower limit of the rate meters this condition cannot be detec-
ted, hence no warning is issued.

WARNING_SYNC_RATE_TOO_HIGH

In histogramming or T3 mode:

The divided pulse rate at the sync input is higher than
12.5 MHz (deadtime limit). Use a larger divider if possible.

In T2 mode:

The pulse rate at the sync input is higher than 9 MHz (bus
limit if running at USB 2.0 speed) or higher than 12.5 MHz
after the divider (deadtime limit if running at USB 3.0 speed).
The most common reason for this error is that a laser sync
signal is still connected. T2 mode is normally intended to be
used without a sync signal. There are some rare measure-
ment scenarios where this condition is expected and the
warning can be disabled. Examples are measurements where
the FIFO can absorb all data of interest before it overflows.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadic-
ally see this warning if your detector has a very low dark
count rate and is blocked by a shutter. In that case you may
want to disable this warning.

√ √

Page 29

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

WARNING_INPT_RATE_TOO_HIGH

You have selected T2 or T3 mode and the overall pulse rate
at the input channels is higher than 9 MHz. The measurement
will inevitably lead to a FiFo overrun. There are some rare
measurement scenarios where this condition is expected and
the warning can be disabled. Examples are measurements
where the FiFo can absorb all data of interest before it over-
flows.

√ √

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at any input channel is higher than 5% of the sync
rate. This is the classical pile-up criterion. It will lead to notice-
able dead-time artefacts. There are rare measurement scen-
arios where this condition is expected and the warning can be
disabled. Examples are antibunching measurements.

√ √

WARNING_DIVIDER_GREATER_ONE

You have selected T2 mode and the sync divider is set larger
than 1. This is probably not intended. The sync divider is de-
signed primarily for high sync rates from lasers and requires a
fixed pulse rate at the sync input. In that case you should use
T3 mode. If the signal at the sync input is from a photon de-
tector (coincidence correlation etc.) a divider > 1 will lead to
unexpected results. There are rare measurement scenarios
where this condition is intentional and the warning can be dis-
abled.

√

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/SyncRate) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:
 Histogramming mode: Span = Resolution * 65536
 T3 mode: Span = Resolution * 32768
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional
and the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/SyncRate)
can be covered by the measurement time span without using
an offset. The offset may lead to events getting discarded.
There are some measurement scenarios where this condition
is intentional and the warning can be disabled.

√ √

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with an oscillo-
scope of sufficient bandwidth.

Page 30

PicoQuant GmbH HydraHarp 400 HHLib Programming Library V. 3.0.0.3

Page 31

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
http://www.picoquant.com

	1. Introduction
	2. General Notes
	2.1. Warranty and Legal Terms
	Disclaimer
	License and Copyright

	3. Firmware Update
	4. Installation of the HHLib Software Package
	4.1. Requirements
	4.2. Libusb Access Permissions
	4.3. Installing the Library
	4.4. Installing the Demo Programs

	5. The Demo Applications
	5.1. Functional Overview
	Histogramming Mode Demos
	TTTR Mode Demos
	Continuous Mode Demos

	5.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Pascal / Lazarus Demos
	The LabVIEW Demos
	The MATLAB Demos

	6. Advanced Techniques
	6.1. Using Multiple Devices
	6.2. Efficient Data Transfer
	6.3. Working with Very Low Count Rates
	6.4. Working with Warnings
	6.5. Hardware Triggered Measurements
	6.6. Working in Continuous Mode

	7. Problems, Tips & Tricks
	7.1. PC Performance Issues
	7.2. USB Interface
	7.3. Troubleshooting
	7.4. Version tracking
	7.5. New Linux Versions
	7.6. Software Updates
	7.7. Bug Reports and Support

	8. Appendix
	8.1. Data Types
	8.2. Functions Exported by hhlib.so
	8.2.1. General Functions
	8.2.2. Device Specific Functions
	8.2.3. Functions for Use on Initialized Devices
	8.2.4. Special Functions for TTTR Mode
	8.2.5. Special Functions for Continuous Mode

	8.3. Warnings

