
PicoHarp 300

Picosecond Histogram Accumulating
Real–time Processor

User's Manual

Version 3.0.0.3 – October 2015

PHLib – Programming Library
for Custom Software Development

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

Table of Contents
1. Introduction... 3

2. General Notes... 4

2.1. Warranty and Legal Terms.. 4

3. Firmware Update.. 5

4. Installation of the PHLib Software Package..6

5. New in this Version... 7

6. The Demo Applications... 8

6.1. Functional Overview... 8

6.2. The Demo Applications by Programming Language...9

7. Advanced Techniques... 13

7.1. Using Multiple Devices... 13

7.2. Efficient Data Transfer.. 13

7.3. Working with Very Low Count Rates...14

7.4. Working with Warnings... 14

8. Problems, Tips & Tricks.. 15

8.1. PC Performance Issues.. 15

8.2. USB Interface... 15

8.3. Troubleshooting.. 15

8.4. Access permissions.. 16

8.5. Version tracking.. 16

8.6. Software Updates... 16

8.7. Bug Reports and Support... 16

9. Appendix... 17

9.1. Data Types.. 17

9.2. Functions Exported by PHLib.DLL..17

9.2.1. General Functions.. 17

9.2.2. Open/Close/Initialize Functions..17

9.2.3. Functions for Initialized Devices...18

9.2.4. Special Functions for TTTR Mode..23

9.2.5. Special Functions for Routing...24

9.3. Warnings... 26

Page 2

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

1. Introduction
The PicoHarp 300 is a compact easy–to–use TCSPC system with USB interface. It includes all components
traditionally contained in bulky racks. Its integrated design keeps cost down, improves reliability and simpli-
fies calibration. The circuit allows high measurement rates up to 10 Mcounts/s and provides a time resolution
of 4 ps. The input channels are programmable for a wide range of input signals. They both have program-
mable Constant Fraction Discriminators (CFD). These specifications qualify the PicoHarp 300 for use with all
common single photon detectors such as Single Photon Avalanche Photodiodes (SPAD), Photo Multiplier
Tubes (PMT) and MCP–PMT modules (PMT and MCP–PMT via preamp). The time resolution is well
matched to these detectors and the overall Instrument Response Function (IRF) will not be limited by the Pi-
coHarp electronics. Similarly inexpensive and easy–to–use diode lasers such as the PDL 800–B with inter-
changeable laser heads can be used as an excitation source perfectly matched to the time resolution offered
by the detector and the electronics. Overall IRF widths of 200 ps FWHM can be achieved with inexpensive
PMTs and diode lasers. Down to 50 ps can be achieved with selected diode lasers and MCP–PMT detect-
ors. 30 ps can be reached with femtosecond lasers. This permits lifetime measurements down to a few pico-
seconds with deconvolution e.g. via the FluoFit multi–exponential Fluorescence Decay Fit Software. For
more information on the PicoHarp 300 hardware and software please consult the PicoHarp 300 manual. For
details on the method of Time–Correlated Single Photon Counting, please refer to our TechNote on TCSPC.

The PicoHarp 300 standard software provides functions such as the setting of measurement parameters,
display of results, loading and saving of measurement parameters and histogram curves. Important meas-
urement characteristics such as count rate, count maximum and position, histogram width (FWHM) are dis-
played continuously. While these features will meet many of the routine demands, advanced users may want
to include the PicoHarp’s functionality in their own automated measurement systems with their own software.
In particular where the measurement must be interlinked or synchronized with other processes or instru-
ments this approach may be of interest. For this purpose a programming library is provided as a Dynamic
Link Library (DLL) for Windows 7, 8 and 10. The library ‘PHLib.dll’ supports custom programming in all
major programming languages, notably C/C++, C#, Pascal (Delphi/Lazarus), MATLAB and LabVIEW. This
manual describes the installation and use of the PicoHarp programming library PHLib.dll and explains the
associated demo programs. Please read both this manual and the PicoHarp manual before beginning your
own software development with the DLL. The PicoHarp 300 is a sophisticated real–time measurement sys-
tem. In order to work with the system using the DLL, sound knowledge in your chosen programming lan-
guage is required.

There is also a library version for Linux. Please refer to the separate manual for this version.

Page 3

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

2. General Notes
This version of the PicoHarp 300 programming library is suitable for Windows 7, 8 and 10, both in the 32-
and 64-bit editions. Other Windows versions probably also work but are not tested and will not be supported.

The library has been tested with applications built under MinGW 4.5.0, MSVC++ 6.0, MSVC++ 2010 and
2013, Borland C++ 5.5, Visual C# 2010 and 2013, Mono 3.2.3 and 4.0.2, as well as Delphi XE5, Lazarus 1.1
(Freepascal 2.7.1), LabView 8.0, LabView 2011, LabView 2015 and MATLAB 7.3.

This manual assumes that you have read the PicoHarp 300 manual and that you have experience with the
chosen programming language. References to the PicoHarp manual will be made where necessary.

This version of the library supports histogramming mode and both TTTR modes.

Users who purchased a license for any older version of the library will receive free updates when they are
available. Updates can be downloadad from the PicoQuant Website.

Users upgrading from earlier versions of the PicoHarp 300 DLL may need to adapt their programs. Some
changes are usually necessary to accommodate new measurement modes and improvements. However,
the required changes are usually minimal and will be explained in the manual (especially check section 6.1
and the notes marked in red in section 9.2).

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version check-
ing in order to avoid incompatibilities. There is a function call tat you can use to retrieve the version number
(see section 9.2). Note that this call returns only the major two digits of the version (e.g. 3.0). The DLL actu-
ally has two further sub–version digits, so that the complete version number has four digits (e.g. 3.0.0.2).
They are shown only in the Windows file properties. These sub–digits help to identify intermediate versions
that may have been released for minor updates or bug fixes. The interface of releases with identical major
version will remain the same.

2.1. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation
including all implied warranties of merchantability and fitness for a particular purpose. In no case
shall PicoQuant GmbH be liable for any direct, indirect or consequential damages or any material or
immaterial damages whatsoever resulting from loss of data, time or profits; arising from use, inability
to use, or performance of this software and associated documentation. Demo code is provided ‘as is’
without any warranties as to fitness for any purpose.

License and Copyright Notice

If you have purchased a license to use the PicoHarp 300 programming library software you may use
the library to operate the device through custom programs. You have not purchased any other rights
to the software itself. The software is protected by copyright and intellectual property laws. You may
not distribute the software to third parties or reverse engineer, decompile or disassemble the soft-
ware or part thereof. You may use and modify demo code to create your own programs. Original or
modified demo code may be re–distributed, provided that the original disclaimer and copyright notes
are not removed from it. Copyright of this manual and on–line documentation belongs to Pi-
coQuant GmbH. No parts of it may be reproduced, translated or transferred to third parties without
written permission of PicoQuant GmbH.

PicoHarp is a registered trademark of PicoQuant GmbH.

Other products and corporate names appearing in this manual may or may not be registered trade-
marks or subject to copyrights of their respective owners. PicoQuant GmbH claims no rights to any
such trademarks. They are used here only for identification or explanation and to the owner’s benefit,
without intent to infringe.

Page 4

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

3. Firmware Update
Note: You can skip this section if you bought your PicoHarp with the DLL option readily installed.

The PicoHarp 300 programming library requires a license installed as a firmware update of your PicoHarp
300, unless you already bought it with the DLL option installed. The update is performed by PHupdate.exe.
This file is provided to you (typically by download link) only if you purchased an upgrade for the DLL option. It
is compiled specifically for the serial number of your PicoHarp and cannot be used on others. The firmware
update only needs to be done once. If necessary, perform the following steps to install the update:

(see your PicoHarp manual for steps 1..3 listed below)

1. Make sure your PicoHarp 300 is powered and connected correctly through USB 2.0.

2. Check that the standard PicoHarp 300 software runs correctly.

3. Make sure to exit the PicoHarp 300 software.

4. Unpack PHupdate.exe to a temporary disk location.

5. Start the program PHupdate.exe from the temporary disk location.

6. Follow the instructions. Do not interrupt the actual update progress, it may take a minute or so. The
program will report successful completion.

After successful completion of the upgrade your PicoHarp is ready to use the DLL. At this point you may still
need to install the DLL package on your PC. See the sections below for hints how to install and use the lib -
rary.

Page 5

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

4. Installation of the PHLib Software Package
PHLib and its demos will not be installed by the standard PicoHarp 300 software setup. The standard "inter-
active" PicoHarp 300 data acquisition software does not require the DLL, which is provided for custom ap-
plication programming only. Vice versa, your custom program will only require the DLL and driver, but not the
standard PicoHarp 300 data acquisition software. Installing both the standard PicoHarp software and DLL–
based custom programs on the same computer is possible, but only one program at a time can use the Pico-
Harp 300.

To install PHLib, please back up your work, then disconnect the PicoHarp device(s) and uninstall any previ-
ous versions of PHLib. Then run the setup program SETUP.EXE in the PHLib folder on the installation CD. If
you received the setup files as a ZIP archive, please unpack them to a temporary directory on your hard disk
and run SETUP.EXE from there. On recent versions of Windows you need administrator rights to perform
the setup. If the setup is performed by an administrator but used from other accounts without full access per-
mission to all disk locations, these restricted accounts may not be able to run the demos in the default loca -
tions they have been installed to. In such cases it is recommended that you copy the demo directory (or se -
lected files from it) to a dedicated development directory, in which you have the necessary rights (e.g. in ‘My
Documents’).

The programming library will access the PicoHarp 300 through a dedicated device driver. The driver is in-
stalled (or updated) by both the standard PicoHarp software installer as well as the PHLib installer. It will
then be detected and used by the standard Windows Plug&Play mechanisms. Dependent on the Windows
version you use you may be prompted one more time for confirmation of the driver installation when the
device is connected for the first time. Both the standard PicoHarp software distribution as well as the PHLib
distribution media contain the driver and you can, if need be, install it manually from there.

You also need to install the PicoHarp 300 hardware and connect it with your signal sources, if you have not
done so before (see your PicoHarp manual).

Starting from version 2.0 multiple devices can be controlled through PHLib. After connecting the device(s)
you can use the Windows Device Manager to check if they have been detected (under the USB tree) and the
driver is correctly installed. On recent Windows versions you will need administrator rights to perform setup
tasks. Refer to your PicoHarp 300 manual for other installation details.

It is recommended to start your work with the PicoHarp 300 by using the standard interactive PicoHarp data
acquisition software. This should give you a better understanding of the system’s operation before attempt-
ing your own programming efforts. It also ensures that your optical/electrical setup is working. If you are
planning to use a router, try to get everything working without router first to avoid additional complications.
See the subfolder DEMOS in your PHLib installation folder for sample code that can be used as a starting
point for your own programs.

Note that you will not be able to run the demos if you have no license for using the library. In this case they
will fail with error code -19 (ERROR_INVALID_OPTION). You can contact PicoQuant or your local reseller to
order the license, which will be shipped very quickly by email in the form of a firmware update.

Page 6

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

5. New in this Version
Version 3.0.0.3 of the library package is a bugfix release providing a firmware fix for all measurement modes
resolving randomly and rarely occuring system errors.

Version 3.0.0.2 of the library package was primarily a bugfix release. It corrected two firmware issues: a data
corruption in T3 mode with maximum binning and a small loss of counts at very short measurement times (in
all modes). The C# demos were updated to fix a bug relating to calling convention.

Version 3.0.0.1 of the PicoHarp 300 software was a bugfix release to deal with firmware errors on some
hardware devices.

Version 3.0 provided a major overhaul with respect to the previous version 2.3. It provides new routines to
change the time offset of the input channels, which eliminates the need for cable delay adjustments. There
are also new routines introduced to obtain information on hardware features and debug information. Further-
more, it introduced a programmable holdoff time for marker signals in TTTR mode where the markers can be
enabled/disabled individually. Multistop in histogramming and T3 mode can be disabled if necessary. Finally,
the policy of return values has been changed to carry only error/success information and never any other
data. The latter are now always passed by reference. The new and changed routines are marked in red in
section 9.2.

The demo set no longer contains source code for Visual Basic. If you still need to program in Visual Basic
you may want to take the demos from the previous version 2.3 as a starting point and adapt them to the
changes shown in section 9.2. If you do not have the old distribution you can request it by email.

Page 7

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

6. The Demo Applications

6.1. Functional Overview
Please note that all demo code provided is correct to our best knowledge, however, we must disclaim all
warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than explanat -
ory purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This
is why most of the demos have a minimalistic user interface and / or run from a simple command box (con-
sole). For the same reason, the measurement parameters are mostly hard–coded and thereby fixed at com-
pile time. It may therefore be necessary to change the source code and re–compile the demos in order to
run them in a way that is matched to your individual measurement setup. Running them unmodified may res -
ult in useless data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc.

For the same reason of simplicity, the demos will always only use the first PicoHarp device they find, al-
though the library can support multiple devices. If you have multiple devices that you want to use simultan-
eously you need to change the code to match your configuration.

There are demos for C / C++, C#, Pascal / Delphi / Lazarus, LabVIEW and MATLAB. For each of these pro-
gramming languages / systems there are different demo versions for various measurement modes:

Standard Mode Demos

These demos show how to use the standard measurement mode for on–board histogramming. These are
the simplest demos and the best starting point for your own experiments. In case of LabVIEW the standard
mode demo is already fairly sophisticated and allows interactive input of most parameters. The standard
mode demos will not initialize or use a router that may be present. Please do not connect a router for these
demos.

Routing Demos

Multi channel measurement (routing) is possible in standard histogramming mode and in TTTR mode. It re -
quires that a PHR 40x or PHR 800 router and multiple detectors are connected. The routing demos show
how to perform such measurements in histogramming mode and how to access the histogram data of the in-
dividual detector channels. The concept of routing in histogramming mode is quite simple and similar to
standard histogramming. In T3 mode it is also very simple using the same library routines. Therefore, no
dedicated demo is provided for routing in T3 mode. To get started see the section about routing in your Pico-
Harp 300 manual.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits extremely sophisticated data analysis methods, such as single molecule burst
detection, the combination of fluorescence lifetime measurement with FCS and picosecond coincidence cor-
relation.

The PicoHarp 300 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. For details on the two modes, please refer to your
PicoHarp manual. TTTR mode always implicitly performs routing if a router and multiple detectors are used.
It is also possible to record external TTL signal transitions as markers in the TTTR data stream (see the Pi-
coHarp manual).

Note: TTTR mode is not part of the standard PicoHarp product. It must be purchased as a separate firmware
option that gets burned into the ROM of the board. An upgrade is possible at any time. It always includes
both T2 and T3 mode.

Because TTTR mode requires real–time processing and/or real–time storing of data, the TTTR demos are
fairly demanding both in programming skills and computer performance. See the section about TTTR mode
in your PicoHarp manual.

Page 8

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

6.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, C#, Pascal / Delphi / Lazarus, LabVIEW, and MATLAB. For
each of these programming languages/systems there are different demo versions for the measurement
modes listed in the previous section. They are not 100% identical.

This manual explains the special aspects of using the PicoHarp programming library, it does NOT teach you
how to program in the chosen programming language. We strongly recommend that you do not choose a de-
velopment with the PicoHarp programming library as your first attempt at programming. You can find some
general hints on how to call the library routines from the various programming languages in the individual
language specific folders (See ‘Calling.txt’ files). The ultimate reference for details about how to use the
DLL is in any case the source code of the demos and the header files of PHLib (phlib.h and phdefin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application and / or your complete computer. This may even be the case for
relatively safe operating systems such as Windows 7 and later, because you are accessing a kernel mode
driver through PHLib.dll. This driver has high privileges at kernel level, that provide all power to do dam-
age if used inappropriately. We tried hard to protect against all thinkable mistakes but cannot foresee all pos-
sible sorts of inappropriate use. Make sure to back up your data and / or perform your development work on
a dedicated machine that does not contain valuable data. Note that the DLL is not generally re–entrant. This
means, it cannot be accessed from multiple, concurrent processes or threads at the same time. All calls
must be made sequentially in the order shown in the demos, at least when accessing the same hardware
device. This is not a matter of poor design. It follows from the fact that the hardware is in itself a state ma-
chine that must be programmed in an orderly fashion.

The C / C++ Demos

The demos are provided in the ‘\C’ subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult phlib.h, phdefin.h and this manual for reference on the library
calls. The library functions must be declared as extern "C" when used from C++. This is achieved most
elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

#include "phdefin.h"

#include "phlib.h"

}

In order to make the exports of PHLib.dll known to the rest of your application you may use PHLib.exp
or link directly with the import library PHLib.lib. PHLib.lib was created with symbols decorated in
Microsoft style. MSVC++ users who have version 5.0 or higher can use the supplied project files (*.dsw)
where linking with PHLib.lib is already set up. The DLL also (additionally) exports all symbols
undecorated, so that other compilers should be able to use them conveniently, provided they understand the
Microsoft LIB format or they can create their own import library. The MinGW compiler understands the
Microsoft format. With Borland C++ 5.x and C++Builder you can use the Borland Utility IMPLIB to create
your own import library very easily:

implib PHLib_bc.lib PHLib.dll

It is normal if this gives you warnings about duplicate symbols. Then you link your project with
PHLib_bc.lib. Failing to work with an import library you may still load the DLL dynamically and call the
functions explicitly.

To test any of the demos, consult the PicoHarp manual for setting up your PicoHarp 300 and establish a
measurement setup that runs correctly and generates useable test data. Compare the settings (notably sync
divider, range and CFD levels) with those used in the demo and use the values that work in your setup when
building and testing the demos.

Page 9

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

The C demos are designed to run in a console ("DOS box"). They need no command line input parameters.
They create their output files in their current working directory (*.out). The output files will be ASCII in case
of the standard histogramming demos. The ASCII files will contain single or multiple columns of integer num-
bers representing the counts from the 4,096 histogram channels. You can use any editor or a data visualiza -
tion program to inspect the ASCII histograms. For the TTTR modes the output is stored in binary format for
performance reasons. The binary files must be read by dedicated programs according to the format they
were written in. The file read demos provided for the PicoHarp TTTR data files can be used as a starting
point. They cannot be used directly on the demo output because they expect a file header the demos do not
generate. This is intentional in order to keep the PHLib demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. You need to change the mode input variable
going into PH_Initialize to a value of 3 if you want T3 mode. Note that you probably also need to adjust the
sync divider and the resolution in this case.

The C# Demos

The C# demos are provided in the ‘Csharp’ subfolder. They have been tested with MS Visual Studio as well
as with Mono under Windows and Linux. The only difference is the library name, which in principle could
also be unified.

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type specific-
ation of the parameters. Not all types are easily portable. Especially C strings require special handling. See
Calling.txt.

With the C# demos you also need to check wether the hardcoded settings are suitable for your actual instru-
ment setup. The demos are designed to run in a console ("DOS box"). They need no command line input
parameters. They create their output files in their current working directory (*.out). The output files will be AS-
CII in case of the standard and routing demos. For continuous and TTTR mode the output is stored in binary
format for performance reasons. The ASCII files will contain single or multiple columns of integer numbers
representing the counts from the 4096 histogram channels. You can use any editor or a data visualization
program to inspect the ASCII histograms. The binary files must be read by dedicated programs according to
the format they were written in.

The Delphi / Lazarus Demos

Pascal users (Delphi or Lazarus) please refer to the ‘DELPHI’ directory. The source code for Delphi and Laz-
arus is the same. Everything for the respective Delphi demo is in the project file for that demo (*.DPR). With
most recent Delphi versions (XE5 and later) please use the *.DPROJ project files. Lazarus users can use
the *.LPI files that internally refer to the *.DPR files.

In order to make the exports of PHLib.dll known to your application you have to declare each function in
your Pascal code as ‘external’. This is already prepared in the demo source code. PHLib.dll was created
in C with symbols decorated in Microsoft style. It additionally exports all symbols undecorated, so that you
can call them from Delphi with the plain function name. Please check the function parameters of your code
against phlib.h in the demo directory whenever you update to a new DLL version. For general reference on
calling DLLs from Delphi see calling.txt.

The Delphi / Lazarus demos are designed to run in a console ("DOS box"). They need no command line in -
put parameters. They create output files in their current working directory. The output files will be ASCII in
case of the standard histogramming demo. In TTTR mode the output is stored in binary format for perform -
ance reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files
must be read by dedicated programs according to the format they were written in. The file read demos
provided for the PicoHarp TTTR data files can be used as a starting point. They cannot be used directly on
the demo output because they expect a file header the demos do not generate. This is intentional in order to
keep the PHLib demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into PH_Initialize to a value of 3 if you want
T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suitable
range (resolution).

Page 10

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

The LabVIEW Demos

The LabVIEW demo VIs are provided in the ‘LABVIEW’ directory. They are contained in LabVIEW libraries
(*.llb). The top–level VI is always ‘PicoHarp.vi’. Note that the sub–VIs in the various demos are not always
identical, even though their names may be the same. You need to use at least LabVIEW 8.0.

The LabVIEW demos are the most sophisticated demos here. The standard mode demo resembles the
standard PicoHarp software with input fields for all settable parameters. Run the top–level VI PicoHarp.vi. It
will first initialize and calibrate the hardware. The status of initialization and calibration will be shown in the
top left display area. Make sure you have a running TCSPC setup with sync and detector correctly connec -
ted. You can then adjust the sync level until you see the expected sync rate in the meter below. Then you
can click the Run button below the histogram display area. The demo implements a simple Oscilloscope
mode of the PicoHarp. Make sure to set an acquisition time of not much more than e.g. a second, otherwise
you will see nothing for a long time. If the input discriminator settings are correct you should see a histogram.
You can stop the measurement with the same (Run) button.

The TTTR mode demo for LabVIEW is a little simpler. It provides the same panel elements for setting para-
meters etc. but there is no graphic display of results. Instead, all data is stored directly to disk. By default, the
TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync rates. You need
to change the mode input variable going into to the Initialization VI to a value of 3 if you want T3 mode. You
also need to use an appropriate sync divider and a suitable range (resolution).

To run the TTTR mode demo you start PicoHarp.vi. First set up the Sync and CFD levels. You can watch the
sync rate in a graphic rate meter. Then you can select a measurement time and a file name. When you click
the Run button a measurement will be performed, with the data going directly to disk. There is a status indic -
ator showing the current number of counts recorded. There is also a status LED indicating any FIFO over-
run.

Internally the TTTR mode demo also deserves a special note: each TTTR record as returned in the buffer of
PH_TTReadData actually is a DWORD (32bit). However, LabVIEW stores DWORD data (U32) always in big
endian format. On the x86 platform (little endian) this results in reversed bytes compared to C programs. For
consistency with the demo programs for reading TTTR data this byte reversing of the data going to disk is
avoided in the demo by declaring the buffer for PH_TTReadData as a byte array (hence 4 times longer than
the DWORD array). You may instead want to work with a U32 array if your goal is not storing data to disk but
doing some on–line analysis of the TTTR records. In this case you must initialize the array with 65,536 x U32
and change the type of buffer in the library calls of PH_TTReadData to U32.

The LabVIEW demos access the DLL routines via the ‘Call Library Function’ of LabVIEW. For details refer to
the LabVIEW application note 088 ‘How to Call Win32 Dynamic Link Libraries (DLLs) from LabVIEW’ from
National Instruments. Consult phlib.h or the manual section further down for the parameter types etc.
Make sure to specify the correct calling convention (stdcall).

Strictly observe that the PH_xxxx library calls are not re–entrant when they address the same device. They
must be made sequentially and in the right order. They cannot be called in parallel as is the default in Lab -
VIEW if you place them side by side in a diagram. Although you can configure each library call to avoid par-
allel execution, this still gives no precise control over the order of execution. For some of the calls this order
is very important. Sequential execution must therefore be enforced by sequence structures or data depend-
ency. In the demos this is e.g. done by chained and/or nested case structures. This applies to all VI hier -
archy levels, so sub–VIs containing library calls must also be executed in correct sequence.

The MATLAB Demos

The MATLAB demos are provided in the ‘MATLAB’ directory. They are contained in m–files. You need to
have a MATLAB version that supports the 'calllib' function. We have tested with MATLAB 7.3 but any version
from 6.5 should work. Note that recent MATLAB versions require the installation of a compiler in order to call
DLLs. Consult your MATLAB documentation for how to do this.

Be very careful about the header file name specified in 'loadlibrary'. This name is case sensitive and a wrong
spelling will lead to an apparently successful load but later no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output files will be ASCII in case
of the standard histogramming demo and in case of the routing demo. In TTTR mode the output is stored in
binary format for performance reasons. You can use any data visualization program to inspect the ASCII his -
tograms. The binary files must be read by dedicated programs according to the format they were written in.
The file read demos provided for the PicoHarp TTTR data files can be used as a starting point. They cannot

Page 11

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

be used directly on the demo output because they expect a file header the demos do not generate. This is
intentional in order to keep the PHLib demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into PH_Initialize to a value of 3 if you want
T3 mode. At the same time you need to modify your program for an appropriate sync divider and a suitable
range (resolution).

Page 12

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

7. Advanced Techniques

7.1. Using Multiple Devices
Starting from version 2.0 the library is designed to work with multiple PicoHarp devices (up to 8). The demos
always use the first device found. If you have more than one PicoHarp and you want to use them together
you need to modify the code accordingly. At the API level of PHLib the devices are distinguished by a device
index (0 .. 7). The device order corresponds to the order Windows enumerates the devices. If the devices
were plugged in or switched on sequentially when Windows was already up and running, the order is given
by that sequence. Otherwise it can be somewhat unpredictable. It may therefore be difficult to know which
physical device corresponds to the given device index. In order to solve this problem, the library routine
PH_OpenDevice provides a second argument through which you can retrieve the serial number of the phys-
ical device at the given device index. Similarly you can use PH_GetSerialNumber any time later on a device
you have successfully opened. The serial number of a physical PicoHarp device can be found at the back of
the housing. It is a 8 digit number starting with 0100. The leading zero will not be shown in the serial number
strings retrieved through PH_OpenDevice or PH_GetSerialNumber.

It is important to note that the list of devices may have gaps. If you have e.g. two PicoHarps you cannot as-
sume to always find device 0 and 1. They may as well appear e.g. at device index 2 and 4 or any other in -
dex. Such gaps can be due to other PicoQuant devices (e.g. Sepia II) occupying some of the indices, as well
as due to repeated unplugging / replugging of devices. The only thing you can rely on is that a device you
hold open remains at the same index until you close or unplug it.

As outlined above, if you have more than one PicoHarp and you want to use them together you need to
modify the demo code accordingly. This requires briefly the following steps: Take a look at the demo code
where the loop for opening the device(s) is. In most of the demos all the available devices are opened. You
may want to extend this so that you

1. filter out devices with a specific serial number

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs such as the
regular PicoHarp software.

By means of the device indices you picked out you can then extend the rest of the program so that every ac -
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap-
proach. It does no harm if you close a device that you haven't opened.

7.2. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the PicoHarp 300 uses USB 2.0 bulk transfers. This is supported
by the PC hardware that can transfer data to the host memory without much help of the CPU. For the Pico-
Harp this permits data throughput as high as 5 Mcps and leaves time for the host to perform other useful
things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the DLL user in a single function PH_TTReadData
that accepts a buffer address where the data is to be placed, and a transfer block size. This block size is crit -
ical for efficient transfers. The larger the block size, the better the transfer efficiency. This is because setting
up a transfer costs some fixed amount of time, independent of the block size. The maximum transfer block
size is 131,072 (128k event records). However, it may not under all circumstances be ideal to use the max-
imum size. The demos use a medium size of 32,768 records.

As noted above, the transfer is implemented efficiently without using the CPU excessively. Nevertheless, as-
suming large block sizes, the transfer takes some time. Windows therefore gives the unused CPU time to
other processes or threads i.e. it waits for completion of the transfer without burning CPU time. This wait
time is what can also be used for doing ‘useful things’ in terms of any desired data processing or storing
within your own application. The best way of doing this is to use multi–threading. In this case you design

Page 13

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

your program with two threads, one for collecting the data (i.e. working with PH_TTReadData) and another
for processing or storing the data. Multiprocessor systems can benefit from this technique even more. Of
course you need to provide an appropriate data queue between the two threads and the means of thread
synchronization. Thread priorities are another issue to be considered. Finally, if your program has a graph-
ical user interface you may need a third thread to respond to user actions reasonably fast. Again, this an ad-
vanced technique and it cannot be demonstrated in detail here. Greatest care must be taken not to access
the PHLib DLL from different threads without strict control of mutual exclusion and maintaining the right se -
quence of function calls. However, the technique also allows throughput improvements of 50% .. 100% and
advanced programmers may want to use it. It might be interesting to note that this is how TTTR mode is im-
plemented in the regular PicoHarp software, where sustained count rates over 5 millions of counts/sec (to
disk) can be achieved on modern PCs.

When working with multiple PicoHarp devices, the overall USB throughput is limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without using hubs. If you install additional USB controller cards you should prefer
PCI–express models. Traditional PCI can become a bottleneck in itself. However, modern mainboards often
have multiple USB host controllers, so you may not even need extra controller cards. In order to find out how
many USB controllers you have and which one the individual USB sockets belong to, you can use Mi-
crosoft's tool “usbview.exe”. In case of using multiple devices it is also beneficial for overall throughput if you
use multi–threading in order to fetch and store data from the individual devices in parallel. Again, re–en-
trance issues must be observed carefully in this case, at least for all calls accessing the same device.

7.3. Working with Very Low Count Rates
As noted above, the transfer block size is critical for efficient transfers. The larger the block size, the better
the transfer efficiency. This is because setting up a transfer costs some fixed amount of time, independent of
the block size. However, it may not under all circumstances be ideal to use the maximum size. A large block
size takes longer to fill. If the count rates in your experiment are very low, it may be better to use a smaller
block size. This ensures that the transfer function returns more promptly. It should be noted that the Pico-
Harp has a “watchdog” timer that terminates large transfer requests prematurely so that they do not wait
forever if new data is coming very slowly. The timeout period is approximately 80 ms. This results in
PH_TTReadData returning less than requested (possibly even zero). This helps to avoid complete stalls
even if the maximum transfer size is used with low or zero count rates. However, for fine tuning of your ap -
plication may still be of interest to use a smaller block size. The block size must be a multiple of 512. The
smallest is therefore 512. The hardware rate meters used via GetCountrate employ a gate time of 100 ms.
This gate time cannot be changed. The readings may therefore be inaccurate or fluctuating when the rates
are low. If accurate rates are needed you must perform a full blown measurement and sum up the recorded
events.

7.4. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular PicoHarp software. In order
to obtain and use these warnings also in your custom software you may want to use the library routine
PH_GetWarnings. This may help inexperienced users to notice possible mistakes before stating a measure -
ment or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that PH_GetWarnings does not obtain the count rates on its own, be-
cause the corresponding calls take some time and might waste too much processing time. It is therefore
necessary that PH_GetCountrate has been called for all channels before PH_GetWarnings is called. Since
most interactive measurement software periodically calls PH_GetCountrate anyhow, this is not a serious
complication.

The routine PH_GetWarnings only delivers the cumulated warnings in the form of a bit field. In order to trans-
late this into readable information you can use PH_GetWarningsText. Before passing the bit field into
PH_GetWarningsText you can mask out individual warnings by means of the bit masks defined in phdefin.h.
This may be useful if your experiment conditions are special and would permanently generate some warn-
ings that you expect and do not care about.

Page 14

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

8. Problems, Tips & Tricks

8.1. PC Performance Issues
Performance issues with the DLL are the same as with the standard PicoHarp software. The PicoHarp
device and its software interface are a complex real–time measurement system demanding appropriate per-
formance both from the host PC and the operating system. This is why a fairly modern CPU and sufficient
memory are required. At least a 1 GHz processor (multicore preferred), 1024 MB of memory and a fast hard
disk are recommended. However, as long as you do not use TTTR mode, these issues should not be of
severe impact. If you do intend to use TTTR mode with real-time streaming to files you should consider a
modern solid state disk.

8.2. USB Interface
In order to deliver the required throughput, the PicoHarp 300 uses USB 2.0 bulk transfers. This is why the Pi-
coHarp must rely on having a working USB 2.0 host interface. USB 2.0 host controllers of modern PCs are
usually integrated on the mainboard. For older PCs they may be upgraded as PCI cards. Throughput is usu-
ally limited by the host controller and the operating system, not the PicoHarp. Make sure that the host con-
troller drivers are correctly installed. For earlier Windows versions this may require using the mainboard
manufacturer's driver disk rather than relying on Windows' own drivers. Do not run other bandwidth demand-
ing devices on the same USB interface when working with the PicoHarp. USB cables must be rated for
USB 2.0 high speed. Old cables often do not meet this requirement and can lead to errors and malfunction.
The same happens when the USB 2.0 specification is violated in other ways, e.g. when the cable length ex-
ceeds 5 metres and/or obscure plugs for cable extension are used. Similarly, some PCs have poor internal
USB cabling, so that USB sockets at the front of the PC are sometimes unreliable.

8.3. Troubleshooting
Troubleshooting should begin by testing your hardware and driver setup. This is best accomplished by the
standard PicoHarp software for Windows (supplied by PicoQuant). Only if this software is working properly
you should start work with the DLL. If there are problems even with the standard software, please consult the
PicoHarp manual for detailed troubleshooting advice.

The DLL will access the PicoHarp device through a dedicated device driver. You need to make sure the
device driver has been installed correctly. The driver is installed by the setup program and uses standard
Windows Plug&Play mechanisms. You will be prompted for driver installation when the device is connected
for the first time. Both the standard PicoHarp software distribution as well as the PHLib distribution media
contain the driver. You can use the Windows Device Manager to check if the board has been detected and
the driver is installed. On recent Windows versions you will need administrator rights to perform hardware
setup tasks. Please consult the PicoHarp manual for hardware related problem solutions.

The next step, if hardware and driver are working, is to make sure you have the right DLL version installed. It
comes with its own setup program that must be executed as administrator. In the Windows Explorer you can
also right click PHLib.DLL (in \Windows\System32) and check the version number (under Properties).
You should also make sure your board has the right firmware to use the DLL. The DLL option is not free, a li-
cense must be purchased. You will not be able to run the demos if you have no license for using the library.
In this case they will fail with error code -19 (ERROR_INVALID_OPTION). You can contact PicoQuant or
your local reseller to order the license, which will be shipped very quickly by email in the form of a firmware
update.

To get started, try the readily compiled demos supplied with the DLL. For first tests take the standard histo -
gramming demos. If this is working, your own programs should work as well. Note that the hard coded set -
tings may not be compatible with your experimental setup. Then the pre–compiled demo may not work as
expected. Only the LabVIEW demo allows to enter the settings interactively.

Page 15

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

8.4. Access permissions
On some Windows versions you may need administrator rights to perform the DLL setup. If the setup is per-
formed by an administrator but used from other accounts without full access permission to all disk locations,
these restricted accounts may no be able to run the demos in the default locations they have been installed
to. In such cases it is recommended that you copy the demo directory or selected files from it to a dedicated
development directory in which you have the necessary rights. Otherwise the administrator must give full ac-
cess to the demo directory. On recent Windows platforms it is possible to switch between user accounts
without shutting down the running applications. It is not permitted to start a PicoHarp program if any other
program accessing the device is running in another user account that has been switched away.

8.5. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel -
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and DLL. In any case your software should issue a warning if it de -
tects versions other than those it was tested with.

8.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check for updates (see PicoQuant Web site) before you put effort into pro -
gramming for a possibly outdated library version.

8.7. Bug Reports and Support
The PicoHarp 300 TCSPC system has gone through many iterations of hardware and software improvement
as well as extensive testing. Nevertheless, it is a fairly challenging development and some glitches may still
occur under the myriads of possible PC configurations and application circumstances. We therefore would
like to offer you our support in any case of problems with the system. Do not hesitate to contact PicoQuant in
case of difficulties with your PicoHarp or the programming library.

If you should observe errors or bugs caused by the PicoHarp system please try to find a reproducible error
situation. Then send a detailed description of the problem and all relevant circumstances, especially other
hardware installed in your PC, to support @picoquant.com. Please run msinfo32 to obtain a listing of
your PC configuration and attach the summary file to your error report. Complete information will help us to
help you more quickly.

Of course we also appreciate good news: If you have obtained exciting results with one of our systems,
please let us know, and where appropriate, please mention the instrument in your publications. At our Web–
site we maintain a large bibliography of publications related to our instruments. It may serve as a reference
for you and other potential users. See http://www.picoquant.com/scientific/references. Please submit your
publications for addition to this list.

Page 16

http://www.picoquant.com/scientific/references
mailto://support@picoquant.com
mailto://support@picoquant.com

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

9. Appendix

9.1. Data Types
The PicoHarp programming library PHLib.DLL is written in C and its data types correspond to stand-
ard C/C++ data types as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note that the format for the decimal point may depend on your Windows settings at run–time of the PicoHarp
software (usually national language dependent).

Note also that on platforms other than x86 machines byte swapping may occur when the PicoHarp data files
are read there for further processing. We recommend using the native x86 environment consistently.

9.2. Functions Exported by PHLib.DLL
See phdefin.h for predefined constants given in capital letters here. Return values < 0 usually denote
errors. See errcodes.h for the error codes. All functions must be called with _stdcall convention.

9.2.1. General Functions
These functions work independent from any device.

int PH_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a PH_xxx function call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, log files, etc.

int PH_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: This is the only function you may call before opening and initializing a device. Use it to ensure compatibility of the library with
your own application. Take this seriously if you do not want to end up in a mess when new versions come out.

9.2.2. Open/Close/Initialize Functions
All functions below are device related and require a device index.

Page 17

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

int PH_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int PH_Initialize (int devidx, int mode);

arguments: devidx: device index 0..7
mode: 0 = histogramming,

2 = T2_Mode
3 = T3_Mode

return value: =0 success
<0 error

Note: This call will fail with error code -19 (ERROR_INVALID_OPTION) if you have no license for using the library.
It will also fail with this error code if you try to initialize for TTTR mode without having a license for TTTR mode.

9.2.3. Functions for Initialized Devices
All functions below can only be used after PH_Initialize was successfully called.

int PH_GetHardwareInfo (int devidx, char* model, char* partnum, char* vers); changed in v.3.0

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 16 characters
partnum: pointer to a buffer for at least 8 characters
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_GetBaseResolution (int devidx, double* resolution); changed in v.3.0

arguments: devidx: device index 0..7
resolution: base resolution of the device (passed by reference)

return value: =0 success
<0 error

int PH_GetFeatures (int devidx, int* features); new in v.3.0

arguments: devidx: device index 0..7
features: features of this device (a bit pattern, passed by reference)

Page 18

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

return value: =0 success
<0 error

Note: Use the predefined bit mask values in phdefin.h to probe for a specific feature

int PH_Calibrate (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

int PH_SetInputCFD (int devidx, int channel, int level, int zerocross); changed in v.3.0

arguments: devidx: device index 0..7
channel: number of the input channel (0 or 1)
level: CFD discriminator level in millivolts

minimum = DISCRMIN
maximum = DISCRMAX

level: CFD zero cross in millivolts
minimum = ZCMIN
maximum = ZCMAX

return value: =0 success
<0 error

Note: Values are passed as a positive number although the electrical signals are actually negative.

int PH_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: input rate divider applied at channel 0

(1, 2, 4, or 8)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values <= 10 MHz. It should only be used with sync sources
of stable period. The readings obtained with PH_GetCountRate are corrected for the divider setting and deliver the external
(undivided) rate.

int PH_SetSyncOffset (int devidx, int offset); new in v.3.0

arguments: devidx: device index 0..7
offset: offset (time shift) in ps for that channel

minimum = SYNCOFFSMIN
maximum = SYNCOFFSMAX

return value: =0 success
<0 error

Note: This function can replace an adjustable cable delay. A positive offset corresponds to inserting a cable in the sync input.
See also PH_SetRoutingChannelOffset.

int PH_SetStopOverflow (int devidx, int stop_ovfl, int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

(max. 65,535)

return value: =0 success
<0 error

Note: This setting determines if a measurement run will stop if any channel reaches the maximum set by stopcount. If stop_ofl is 0
the measurement will continue but counts above 65,535 in any bin will be clipped.

Page 19

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

int PH_SetBinning (int devidx, int binning); changed in v.3.0

arguments: devidx: device index 0..7
binning: binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS─1) (largest)

return value: =0 success
<0 error

Note: The binning code corresponds to a power of 2, i.e.

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int PH_SetMultistopEnable (int devidx, int enable); new in v.3.0

arguments: devidx: device index 0..7
enable: 0 = disable

1 = enable (default)

return value: =0 success
<0 error

Note: This is only for special applications where the multistop feature of the PicoHarp is causing complications in statistical analysis.
Ususally it is not required to call this funktion. By default, multistop is enabled after PH_Initialize.

int PH_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: offset in picoseconds (histogramming and T3 mode only)

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: The true offset is an approximation of the desired offset by the nearest multiple of the base resolution. This offset only acts on
the difference between ch1 and ch0 in histogramming and T3 mode. Do not confuse it with the input offsets.

int PH_ClearHistMem (int devidx, int block);

arguments: devidx: device index 0..7
block: block number to clear

return value: =0 success
<0 error

int PH_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

int PH_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Can also be used before the CTC expires but for internal housekeeping it MUST be called any time you finish a measure -
ment, even if data collection was stopped internally, e.g. by expiration of the CTC or an overflow.

Page 20

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

int PH_CTCStatus (int devidx, int* ctcstatus); changed in v.3.0

arguments: devidx: device index 0..7
ctcstatus: =0 acquisition time still running

>0 acquisition time has ended

return value: =0 success
<0 error

int PH_GetHistogram (int devidx, unsigned int* chcount, int block); changed in v.3.0

arguments: devidx: device index 0..7
chcount: pointer to an array of at least HISTCHAN double words (32bit)

where the histogram data can be stored
block: block number to fetch

(block > 0 meaningful only with routing)

return value: =0 success
<0 error

Note: The current version counts only up to 65,535 (16 bits). This may change in the future.

int PH_GetResolution (int devidx, double* resolution); changed in v.3.0

arguments: devidx: device index 0..7
resolution: resolution at current binning (passed by reference)

return value: =0 success
<0 error

int PH_GetCountRate (int devidx, int channel, int* rate); changed in v.3.0

arguments: devidx: device index 0..7
channel: number of the input channel (0 or 1)
rate: current pulse rate at this channel (passed by reference)

return value: =0 success
<0 error

Note: The hardware rate meters employ a gate time of 100 ms. You must allow at least 100 ms after PH_Initialize or PH_SetDync-
Divider to get a valid rate meter reading. Similarly, wait at least 100 ms to get a new reading. The readings are corrected for
the sync divider setting and deliver the external (undivided) rate. The gate time cannot be changed. The readings may there-
fore be inaccurate or fluctuating when the rates are very low. If accurate rates are needed you must perform a full blown
measurement and sum up the recorded events.

int PH_GetFlags (int devidx, int* flags); changed in v.3.0

arguments: devidx: device index 0..7
flags: current status flags (a bit pattern, passed by reference)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in phdefin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.
It is also recommended to check for FLAG_SYSERROR to detect possible hardware failures. In that case you may want to
call PH_GetHardwareDebugInfo and submit the results for support.

int PH_GetElapsedMeasTime (int devidx, double* elapsed); changed in v.3.0

arguments: devidx: device index 0..7
elapsed: elapsed measurement time in ms (passed by reference)

return value: =0 success
<0 error

Page 21

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

int PH_GetWarnings (int devidx, int* warnings); changed in v.3.0

arguments: devidx: device index 0..7
warnings: warnings, (passed by reference)

bitwise encoded (see phdefin.h)

return value: =0 success
<0 error

Note: Must call PH_GetCoutRates for all channels prior to this call.

int PH_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters
warnings: integer (bitfield) obtained from PH_GetWarnings

return value: =0 success
<0 error

int PH_GetHardwareDebugInfo (int devidx, char* debuginfo); new in v.3.0

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 16384 characters

return value: =0 success
<0 error

Note: It is recommended to use PH_GetFlags and check for FLAG_SYSERROR to detect possible hardware failures. In that case
you may want to call PH_GetHardwareDebugInfo and submit the results for support.

Page 22

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

9.2.4. Special Functions for TTTR Mode
To use these functions, you must have purchased the TTTR mode option. You can use PH_GetFeatures to
probe for it.

int PH_ReadFiFo (int devidx, unsigned int* buffer, int count, int* nactual); changed in v.3.0

arguments: devidx: device index 0..7
buffer: pointer to an array of count dwords (32bit)

where the TTTR data can be stored
count: number of TTTR records to be fetched

(max TTREADMAX)

nactual: number of dwords actually read (passed by reference)

return value: =0 success
<0 error

Note: Must not be called with count larger than buffer size permits. CPU time during wait for completion will be yielded to other pro-
cesses/threads. Function will return after a timeout period of ~80 ms, even if not all data could be fetched. Return value indic-
ates how many records were fetched. Buffer must not be accessed until the function returns. Make sure to call PH_ReadFiFo
in a loop until all data is retrieved. You cannot always rely on getting all data in one flush, even if it is less than count.

int PH_SetMarkerEdges (int devidx, int me0, int me1, int me2, int me3);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: PicoHarp devices prior to hardware version 2.0 support only the first three markers. Default after Initialize is “all rising”.

int PH_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3); new in v.3.0

arguments: devidx: device index 0..7
me<n>: enabling of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Note: PicoHarp devices prior to hardware version 2.0 support only the first three markers. Default after Initialize is “all enabled”.

int PH_SetMarkerHoldofftime (int devidx, int holdofftime); new in v.3.0

arguments: devidx: device index 0..7
holdofftime: holdofftime in nanoseconds

return value: =0 success
<0 error

Note: This setting can be used to clean up glitches on the marker signals. When set to X ns then after detecting a first marker edge
the next marker will not be accepted before X ns. Observe that the internal granularity of this time is only about 50 ns. The
holdoff time is set equally for all marker inputs but the holdoff logic acts on each marker independently.

Page 23

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

9.2.5. Special Functions for Routing
These functions require a PHR 402 / 403 / 800.

int PH_GetRoutingChannels (int devidx, int* rtchannels); changed in v.3.0

arguments: devidx: device index 0..7
rtchannels: number of routing channels (passed by reference)

return value: =0 success
<0 error

int PH_EnableRouting (int devidx, int enable);

arguments: devidx: device index 0..7
enable: routing state control code

1 = enable routing
0 = disable routing

return value: =0 success
<0 error

Note: This function can also be used to detect the presence of a router.

int PH_GetRouterVersion (int devidx, char* model, char* vers);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 8 characters
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_SetRoutingChannelOffset (int devidx, int channel, int offset); new in v.3.0

arguments: devidx: device index 0..7
channel: the channel (0..3) who's offset is to be changed
offset: offset (time shift) in ps for that channel

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This function can be used to compensate small timing delays between the individual routing channels. It is similar to
PH_SetSyncOffset and can replace cumbersome cable length adjustments but compared to PH_SetSyncOffset the adjust-
ment range is relatively small. A positive number corresponds to inserting cable in that channel.

int PH_SetPHR800Input (int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: router channel to be programmed (0 .. 3)
level: trigger voltage level in mV (─1600 .. 2400)
edge: trigger edge

0 = falling edge,
1 = rising edge

return value: =0 success
<0 error

Note 1: Not all channels may be present.

Note 2: Invalid combinations of level and edge may lock up all channels!

Page 24

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

int PH_SetPHR800CFD (int devidx, int channel, int dscrlevel, int zerocross);

arguments: devidx: device index 0..7
channel: router CFD channel to be programmed (0 .. 3)
dscrlevel: discriminator level in mV (0 .. 800)
zerocross: zero crossing level in mV (0 .. 20)

return value: =0 success
<0 error

Page 25

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

9.3. Warnings
The following is related to the warnings (possibly) generated by the library routine PH_GetWarnings. The
mechanism and warning criteria are the same as those used in the regular PicoHarp software and depend
on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that PH_GetCoutrate has been called for
all channels before PH_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur
in all measurement modes. Also, count rate limits for a specific warning may be different in different modes.
The following table lists the possible warnings in the three measurement modes and gives some explanation
as to their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_INP0_RATE_ZERO

No counts are detected at input channel 0. In histogramming
and T3 mode this is the sync channel and the measurement
will not work without that signal.

√ √

WARNING_INP0_RATE_TOO_LOW

The count rate at input channel 0 is below 1 kHz and the sync
divider is >1. In histogramming and T3 mode this is the sync
channel and the measurement will not work without a signal
<1 kHz if the sync divider is >1. If your sync rate is really so
low then you do not need a sync divider >1.

√ √

WARNING_INP0_RATE_TOO_HIGH

You have selected T2 mode and the count rate at input
channel 0 is higher than 5 MHz. The measurement will
inevitably lead to a FiFo overrun. There are rare
measurement scenarios where this condition is expected and
the warning can be disabled. Examples are very short
measurements where the FiFo can absorb all data.

√

WARNING_INP1_RATE_ZERO

No counts are detected at input channel 1. In histogramming
and T3 mode this is the photon event channel and the
measurement will yield nothing without this signal. You may
sporadically see this warning if your detector has a very low
dark counts. In that case you may want to disable this
warning.

√ √

WARNING_INP1_RATE_TOO_HIGH

If you have selected T2 mode then this warning means the
count rate at input channel 1 is higher than 5 MHz. The
measurement will inevitably lead to a FiFo overrun. There are
rare measurement scenarios where this condition is expected
and the warning can be disabled. Examples are very short
measurements where the FiFo can absorb all data.

In histogramming and T3 mode this warning is issued when
the input rate is >10 MHz. This will probably lead to deadtime
artefacts. There are rare measurement scenarios where this
condition is expected and the warning can be disabled.

√ √ √

Page 26

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

Warning Histo Mode T2 Mode T3 Mode

WARNING_INP_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at input 1 is over 5% of the rate at input 0. This is the
classical pile-up criterion. It will lead to noticeable dead-time
artefacts. There are rare measurement scenarios where this
condition is expected and the warning can be disabled.
Examples are antibunching measurements.

√ √

WARNING_DIVIDER_GREATER_ONE

You have selected T2 mode and the sync divider is set larger
than 1. This is probably not intended. The sync divider is
designed primarily for high sync rates from lasers and
requires a fixed pulse rate at channel 0. In that case you
should use T3 mode. If the signal at channel 0 is from a
photon detector (coincidence correlation etc.) a divider >1 will
lead to unexpected results. There are rare measurement
scenarios where this condition is intentional and the warning
can be disabled.

√

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/Rate[ch0]) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:
 Histogramming mode: Span = Resolution * 65536
 T3 mode: Span = Resolution * 4096
Events outside this span will not be recorded. There are
some measurement scenarios where this condition is
intentional and the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/Rate0) can
be covered by the measurement time span without using an
offset. The offset may lead to events getting discarded. There
are some measurement scenarios where this condition is
intentional and the warning can be disabled.

√ √

If any of the warnings you receive indicate wrong count rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with a scope.

Note that all count rate dependent warnings relate to the PicoHarp's native input channels. If you are using a
router, remember that all routing channels share the PicoHarp's input channel 1 and hence create a cumu-
lated common rate at that channel.

Warnings are a feature to support beginners and to add convenience to the software. They are not strictly re -
quired and the related functions need not be called if you have no need for them.

Page 27

PicoQuant GmbH PicoHarp 300 PHLib software v. 3.0.0.3

Page 28

All information given in this manual is reliable to our best knowledge. However, no responsibility is assumed
for possible inaccuracies or omissions. Specifications and external appearance are subject to change without
notice.

PicoQuant GmbH
Unternehmen für optoelektronische Forschung und Entwicklung
Rudower Chaussee 29 (IGZ), 12489 Berlin, Germany
Telephone: +49 / (0)30 / 6392 6929
Fax: +49 / (0)30 / 6392 6561
e-mail: info@picoquant.com
WWW: http://www.picoquant.com

mailto://info@picoquant.com
http://www.picoquant.com/

	1. Introduction
	2. General Notes
	2.1. Warranty and Legal Terms
	Disclaimer
	License and Copyright Notice

	3. Firmware Update
	4. Installation of the PHLib Software Package
	5. New in this Version
	6. The Demo Applications
	6.1. Functional Overview
	Standard Mode Demos
	Routing Demos
	TTTR Mode Demos

	6.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Delphi / Lazarus Demos
	The LabVIEW Demos
	The MATLAB Demos

	7. Advanced Techniques
	7.1. Using Multiple Devices
	7.2. Efficient Data Transfer
	7.3. Working with Very Low Count Rates
	7.4. Working with Warnings

	8. Problems, Tips & Tricks
	8.1. PC Performance Issues
	8.2. USB Interface
	8.3. Troubleshooting
	8.4. Access permissions
	8.5. Version tracking
	8.6. Software Updates
	8.7. Bug Reports and Support

	9. Appendix
	9.1. Data Types
	9.2. Functions Exported by PHLib.DLL
	9.2.1. General Functions
	9.2.2. Open/Close/Initialize Functions
	9.2.3. Functions for Initialized Devices
	9.2.4. Special Functions for TTTR Mode
	9.2.5. Special Functions for Routing

	9.3. Warnings

