
PicoHarp 300
Picosecond Histogram
Accumulating Real-time Processor

PHLib Programming Library
for Custom Software Development

under Linux

User's Manual

Version 3.0.0.3 - October 2015

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Table of Contents

1. Introduction... 3

2. General Notes.. 4

3. Firmware Update..5

4. Installation of the PHLib Software Package...5

5. New in this Version...8

6. The Demo Applications - Functional Overview...8

7. The Demo Applications by Programming Language ...9

8. Advanced Techniques ...13

9. Data Types ..15

10. Functions Exported by PHLib ..16

11. Warnings.. 23

12. Problems, Tips & Tricks ...25

Page 2

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

1. Introduction

The PicoHarp 300 is a compact and easy-to-use TCSPC system with USB interface. Its new design
enhances functionality, keeps cost down, improves reliability and simplifies calibration. The timing
circuit allows high measurement rates up to 10 Mcounts/s and provides a time resolution of 4 ps. The
input channels are programmable for a wide range of input signals. They both have programmable
Constant Fraction Discriminators (CFD). These specifications qualify the PicoHarp 300 for use with all
common single photon detectors such as Single Photon Avalanche Photodiodes (SPAD), Photo
Multiplier Tubes (PMT) and MCP-PMT modules (PMT and MCP-PMT via preamp). The time resolution
is well matched to fast detectors and the overall Instrument Response Function (IRF) will not be
limited by the PicoHarp electronics. Similarly, inexpensive and easy-to-use diode lasers such as the
PDL 800-B with interchangeable laser heads can be used as an excitation source perfectly matched
to the time resolution offered by the detector and the electronics. Overall IRF widths of 200 ps FWHM
can be achieved with inexpensive PMTs and diode lasers. Down to 50 ps can be achieved with
selected diode lasers and MCP-PMT detectors. 30 ps can be reached with femtosecond lasers. This
permits lifetime measurements down to a few picoseconds with deconvolution e.g. via the FluoFit
multiexponential Fluorescence Decay Fit Software. For more information on the PicoHarp 300
hardware and software please consult the PicoHarp 300 manual. For details on the method of Time-
Correlated Single Photon Counting, please refer to our TechNote on TCSPC.

The PicoHarp 300 standard software for Windows provides functions such as the setting of
measurement parameters, display of results, loading and saving of measurement parameters and
histogram curves. Important measurement characteristics such as count rate, count maximum and
position, histogram width (FWHM) are displayed continuously. While these features will meet many of
the routine demands, advanced users may want to include the PicoHarp’s functionality in their own
automated measurement systems with their own software. In particular where the measurement must
be interlinked or synchronized with other processes this approach may be of interest. For this purpose
a programming library is provided as a Dynamic Link Library (DLL) for Windows. As an alternative, a
Linux version of the library is offered, which is subject of this manual. It is 100% API compatible with
the Windows library, so that applications can be ported very easily.

The shared library PHLib.so supports custom programming under Linux in all major programming
languages, notably C/C++, C#, Pascal, MATLAB and LabVIEW. This manual describes the installation
and use of the PicoHarp programming library PHLib.so and explains the associated demo programs.
Please read both this manual and the PicoHarp manual before beginning your own software
developement with the library. The PicoHarp 300 is a sophisticated real-time measurement system. In
order to work with the system using the library, sound knowledge in your chosen programming
language is required.

Page 3

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

2. General Notes

This release of the PicoHarp 300 programming library is suitable for x86 systems with Linux versions
3.0. and higher. There are separate versions for 32 and 64 bit. The library uses Libusb so that no
kernel driver is required. Note that the library is provided as a binary object only.

This manual assumes that you have read the PicoHarp 300 manual and that you have experience
with the chosen programming language. References to the PicoHarp manual will be made where
necessary.

This version of the library supports histogramming mode and both TTTR modes but TTTR mode is
only usable if the TTTR option was purchased and installed in the device firmare memory.

Users who purchased a license for any older version of the library will receive free updates when they
are available. It is strongly recommended that you check for updates (see PicoQuant Web site) before
you put effort into programming for a possibly outdated library version.

Users upgrading from earlier versions of the PicoHarp 300 library or moving over from the Windows
DLL need to adapt their programs. Some changes are usually necessary to accommodate new
measurement modes and improvements. However, the required changes are mostly minimal and will
be explained in the manual (especially check section 6, 7 and the notes marked red in section 10).

Note that despite of our efforts to keep changes minimal, data structures, program flow and function
calls may still change in future versions without advance notice. Users must maintain appropriate
version checking in order to avoid incompatibilities. There is a function call tat you can use to retrieve
the version number (see section 10). Similarly, the development of Linux is highly dynamic and
distributions may vary considerably. This manual can therefore only try and describe a snapshot valid
at the time of writing.

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to this software including all implied warranties
of merchantability and fitness. In no case shall PicoQuant GmbH be liable for any direct, indirect or
consequential damages or any material or immaterial damages whatsoever resulting from loss of
data, time or profits arising from use or performance of this software. Demo code is provided ‘as is’
without any warranties as to fitness for any purpose.

License and Copyright Notice

If you have purchased a license to use the PicoHarp 300 programming library software you may use
the library to operate the device through custom programs. You have not purchased any other rights to
the software itself. The software is protected by copyright and intellectual property laws. You may not
distribute the software to third parties or reverse engineer, decompile or disassemble the software or
part thereof. You may use and modify demo code to create your own programs. Original or modified
demo code may be re-distributed, provided that the original disclaimer and copyright notes are not
removed from it.

PicoHarp is a registered trademark of PicoQuant GmbH.

Other trademarks, mostly related to operating systems, programming languages and their
components etc. are property of their respective owners and are used here for explanatory purposes
only, to the owner's benefit and without the intent to infringe.

PHLib.so dynamically links with Libusb.so to acces the PicoHarp USB device. Libusb for Linux is
licensed under the LGPL which allows a fairly free use even in commercial projects. For details and
precise terms please see http://libusb.info. A copy of the LGPL can also be found in the folder
library of the PHLib distribution archive.

Page 4

http://libusb.info/

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

3. Firmware Update

Note: You can skip this section if you bought your PicoHarp with the DLL license option readily
installed.

The PicoHarp 300 programming library requires a firmware update of your PicoHarp 300, unless you
already bought it with the DLL option installed. The update must be performed by PHUPDATE.EXE
under Windows. This file is provided to you (typically be email) only if you purchased an upgrade for
the DLL option. It is compiled specifically for the serial number of your PicoHarp and cannot be used
on others. The firmware update only needs to be done once. If necessary, perform the following steps
to install the update:

(see your PicoHarp manual for steps 1..3 listed below)

1. Make sure your PicoHarp 300 is powered and connected correctly through USB 2.0.

2. Check that the standard PicoHarp 300 software for Windows runs correctly.

3. Make sure to exit the PicoHarp 300 software.

4. Start the program PHUPDATE.EXE from a temporary disk location.

5. Follow the instructions. Do not interrupt the actual update progress, it may take a minute or so. The
program will report successful completion.

After successful completion of the upgrade your PicoHarp is ready to use PHLib. See the sections
below for hints how to install and use it.

4. Installation of the PHLib Software Package

4.1 Requirements

Supported hardware is at this time the x86 platform only (32 or 64 bit). Recommended is a PC with at
least 1 GHz CPU clock and 1 GB of memory. Multiple CPU cores are helpful if your application logic
also needs CPU time. For serious use of the TTTR measurement modes a speedy hard disk is
recommended.

The PicoHarp 300 library is designed to run on Linux kernel versions 3.x. It has been tested with the
following Linux distributions:

OpenSuSE 13.1
Kubuntu 12.04

Using the PicoHarp 300 library requires libusb 0.1.12 or the combination of Libusb 1.0 and Libusb-
Compat (see http://libusb.info). The latter combination is part of all recent Linux distributions and
should typically be readily installed on your system.

It is recommended to start your work with the PicoHarp 300 by using the standard interactive
PicoHarp data acquisition software under Windows. This should give you a better understanding of
the instrument’s operation before attempting your own programming efforts. It also ensures that your
optical/electrical setup is working. If you are planning to use a router, try to get everything working
without router first to avoid additional complications.

4.2 Libusb Access Permissions

For device access through libusb, your kernel needs support for the USB filesystem (usbfs) and that
filesystem must be mounted. This is done automatically, if /etc/fstab contains a line like this:

 usbfs /proc/bus/usb usbfs defaults 0 0

Page 5

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

This should routinely be the case if you installed any of the tested distributions.
The permissions for the device files used by libusb must be adjusted for user access. Otherwise only
root can use the devices. The device files are located in /proc/bus/usb/. Any manual change would not
be permanent, however. The permissions will be reset after reboot or replugging the device. A much
more elegant way of finding the right files and setting the suitable permissions is by means of
hotplugging scripts or udev. Which mechanism you can use depends on the Linux distribution you
have. Recent distributions have replaced hotplug with udev.

Hotplug

For automated setting of the device file permissions with hotplug you have to add an entry to the
hotplug “usermaps”. These files are located in /etc/hotplug/. If the entire hotplug directory does not
exist, you probably don't have the hotplug package installed. This may be because your distribution is
rather old (you may still be able to install hotplug) or it is very new and uses udev instead of hotplug
(see section below).

Every line in the hotplug usermap files is for one device, the line starts with a name that will also be
used for a handler script. Here we are trying to get a PicoHarp300 device working, so let's call the
entry "PicoHarp300". The next entry is always 0x0003. The following two entries are the vendor ID
(0x0e0d for PicoQuant) and the product ID (0x0003 for the PicoHarp 300). The remaining fields are all
set to 0.

The line for the PicoHarp should look like below. The whole string should be on one line. Here it only
wraps around due to limited page width:

PicoHarp300 0x0003 0x0e0d 0x00003 0x0000 0x0000
0x00 0x00 0x00 0x00 0x00 0x00 0x00000000

The handler script “PicoHarp300” gets started when the device is connected or disconnected. It looks
like this:

#!/bin/bash

if ["${ACTION}" = "add"] && [-f "${DEVICE}"]
then
 chown root "${DEVICE}"
 chgrp users "${DEVICE}"
 chmod 666 "${DEVICE}"
fi

When the PicoHarp gets switched on or connected, the hotplug system will recognize it and will run
the script, which will then change the permissions on the device file associated with the device to 666,
which means that everybody can both read and write from/to this device. Note that this may be
regarded as a security gap. If you whish tighter access control you can create a dedicated group for
PicoHarp users and give access only to that group.

Both a usemap file PicoHarp300.usermap and the handler script PicoHarp300 are provided in the
hotplug folder on the PHLib distribution media. Copying both of them to /etc/hotplug/usb/ should be
sufficient to set up acces conrol via hotplugging for your PicoHarp.

Udev

As noted above, recent distributions replace hotplug with udev. You won't find /etc/hotplug in this case.
Instead, you can use udev to create the devices so they are readable and writable by non-priveleged
users. The udev rules are contained in files in /etc/udev/rules.d. Udev processes these files in
alphabetical order. The default file is usually called 50-udev.rules. Don't change this file as it could be
overwritten when you upgrade udev. Instead, write your custom rule for the PicoHarp in a separate
file. The contents of this file for the handling of the PicoHarp 300 should be:

ATTR{idVendor}=="0d0e", ATTR{idProduct}=="0003", MODE="0666"

A suitable rules file PicoHarp.rules is provided in the udev folder on the PHLib distribution media. You
can simply copy it to the rules.d folder. The install script in the same folder does just this. Note that the

Page 6

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

name of the rules file is important. Each time a device is detected, the files are read in alphabetical
order, line by line, until a match is found. Note that different distributions may use different rule file
names for various categories. For instance, Kubuntu organizes the rules into further files: 20-
names.rules, 40-permissions.rules, and 60-symlinks.rules. In Fedora they are not separated by those
categories, as you can see by studying 50-udev.rules. Instead of editing the existing files, it is
therefore usually recommended to put all of your modifications in a separate file like 10-udev.rules or
10-local.rules. The low number at the beginning of the file name ensures it will be processed before
the default file. However, later rules that are more general (applying to a whole class of devices) may
later override the desired acecss rights. This is the case for USB devices handled through Libusb. It is
therefore important that you use a rules file for the PicoHarp that gets evaluated after the general
case. The default naming “PicoHarp300.rules” most likely ensures this.

Note that there are different udev implementations with different command sets. On some distributions
you must reboot to activate changes, on others you can reload rule changes and restart udev with
these commands:

udevcontrol reload_rules
udevstart

4.3 Installing the Library

The library is distributed as a binary file. By default it resides under /usr/local/lib/ph300 (32 bit) or
/usr/local/lib64/ph300 (64 bit). This is not a strict requirement but it is where the demo programs will
look for the library files and therefore it is recommended to use this location. You can create the
directory /usr/local/lib/ph300 (32 bit) or /usr/local/lib64/ph300 (64 bit) and copy all files from the
directory library on the distribution media to that location (phlib.so, phlib.h, phdefin.h and
errorcodes.h). The shell script install in the library distribution directory does the directory creation and
installation in one step. As root, just issue it at the command prompt from within the library directory.
After installing, the library is ready to use and can be tested with the demos provided.

Note that Lazarus and Mono are somewhat picky as to what they accept as a library name. Both
expect a name starting with lib. Lazarus also does not easily allow linking with a library that is not in
the default path. In order to solve both problems, the install script for PHLib creates a link making it
also appear under the alias /usr/lib/libph300.so (32 bit) or /usr/local/lib64/libph300.so (64 bit). This is
the path the Lazarus and Mono demos use for accessing phlib.so.

If you want to install the library in a different place and/or if you want to simplify access to the library
you can add the chosen path to /etc/ld.so.conf and/or to the path list in the environment variable
LD_LIBRARY_PATH. In this case, observe the special requirements for Lazarus and Mono.

Note for SELinux: If upon linking with phlib.so you get an error “cannot restore segment prot after
reloc” you need to adjust the security settings for phlib.so. As root you need to run:

chcon -t texrel_shlib_t /usr/local/lib/ph300/phlib.so

4.4 Installing the Demo Programs

The demos can be installed by simply copying the entire directory demos from the distribution media
to a disk location of your choice. This need not be under the root account but you need to ensure
proper file permissions. While the C compiler for the C demos, as well as Mono for C# are part of all
recent linux distributions, you will probably need to obtain and install Lazarus/Pascal, Matlab or
LabVIEW for Linux separately if you wish to use these programming environments.

Page 7

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

5. New in this Version

Version 3.0.0.3 of the library package is a bugfix release providing a firmware fix for all measurement
modes resolving randomly and rarely occuring system errors.

Version 3.0.0.2 of the library package was primarily a bugfix release. It corrected two firmware issues:
a data corruption in T3 mode with maximum binning and a small loss of counts at very short
measurement times (in all modes). The C# demos were updated to fix a bug relating to calling
convention.

Version 3.0.0.1 of the PicoHarp 300 software was a bugfix release to deal with firmware errors on
some hardware devices.

Version 3.0 provided a major overhaul with respect to the previous version 2.3. It provides new
routines to change the time offset of the input channels, which eliminates the need for cable delay
adjustments. There are also new routines introduced to obtain information on hardware features and
debug information. Furthermore, it introduced a programmable holdoff time for marker signals in TTTR
mode where the markers can be enabled/disabled individually. Multistop in histogramming and T3
mode can be disabled if necessary. Finally, the policy of return values has been changed to carry only
error/success information and never any other data. The latter are now always passed by reference.
The new and changed routines are marked in red in section 10.

Users upgrading from earlier versions of the PHLib will need to adapt their programs. It is important to
note here one more time that you must maintain appropriate version checking in order to avoid
crashes or malfunction due to such changes. There is a function call tat you can use to retrieve the
version number (see section 10).

6. The Demo Applications - Functional Overview

Please note that all demo code provided is correct to our best knowledge, however, we must disclaim
all warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than
explanatory purposes and a starting point for your own work. For any practical work the demo
programs will almost always require modification.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library.
This is why most of the demos have a minimalistic user interface and/or run purely text based from a
shell prompt (terminal window). For the same reason, the measurement parameters are mostly hard-
coded and thereby fixed at compile time. It may therefore be necessary to change the source code
and re-compile the demos in order to run them in a way that is matched to your individual
measurement setup. Running them unmodified may result in useless data (or none at all) because of
inappropriate sync divider, resolution, input level settings, etc.

For the same reason of simplicity, the demos will always only use the first PicoHarp device they find,
although the library can support multiple devices. If you have multiple devices that you want to use
simultaneously you need to change the code to match your configuration.

There are demos for C, C#, Pascal, LabVIEW and MATLAB. The demos are 99% identical to those for
Windows, so that code can easily be ported between the platforms. For each of the programming
languages/systems there are different demo versions for various measurement modes:

Standard Mode Demos

These demos show how to use the standard measurement mode for on-board histogramming. These
are the simplest demos and the best starting point for your own experiments. In case of LabVIEW the
standard mode demo is already fairly sophisticated and allows interactive input of most parameters.
The standard mode demos will not initialize or use a router that may be present. Please do not
connect a router for these demos.

Page 8

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Routing Demos

Multi channel measurement (routing) is possible in standard histogramming mode and in TTTR mode.
It requires that a PHR 40x or PHR 800 router and multiple detectors are connected. The routing
demos show how to perform such measurements in histogramming mode and how to access the
histogram data of the individual detector channels. The concept of routing in histogramming mode is
quite simple and similar to standard histogramming. In TTTR mode it is also very simple using the
same library routines. Therefore, no dedicated demo is provided for routing in TTTR mode. To get
started see the section about routing in your PicoHarp 300 manual. If you need the routing
functionality in any of the other demos you need to copy the relevant code fragments from the routing
demos.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming
histograms on board. This permits extremely sophisticated data analysis methods, such as single
molecule burst detection, the combination of fluorescence lifetime measurement with FCS, and
picosecond coincidence correlation.

The PicoHarp 300 actually supports two different Time-Tagging modes, T2 and T3 Mode. When
referring to both modes together we use the general term TTTR here. For details on the two modes,
please refer to your PicoHarp manual. TTTR mode always implicitly performs routing if a router and
multiple detectors are used. It is also possible to record external TTL signal transitions as markers in
the TTTR data stream e.g. for image scanning applications (see the PicoHarp manual).

Note: TTTR mode is not part of the standard PicoHarp product. It must be purchased as a separate
firmware option that gets burned into the ROM of the device. An upgrade is possible at any time. It
always includes both T2 and T3 mode.

Because TTTR mode requires real-time processing and/or real-time storing of data, the TTTR demos
are fairly demanding both in programming skills and computer performance. See the section about
TTTR mode in your PicoHarp manual as well as section 8 here.

7. The Demo Applications by Programming Language

As outlined above, there are demos for C, C#, Pascal, LabVIEW and MATLAB. For each of these
programming languages/systems there are different demo versions for the measurement modes listed
in the previous section. They are not 100% identical.

This manual explains the special aspects of using the PicoHarp programming library, it does NOT
teach you how to program in the chosen programming language. We strongly recommend that you do
not choose a development with the PicoHarp library as your first attempt at programming. Please
study the documentation of your chosen programming language, especially on how to call routines in
dynamic link libraries. The ultimate reference for details about how to use the library is in any case the
source code of the demos and the header files of PHlib (phlib.h, phdefin.h and errorcodes.h).

Be warned that wrong parameters and/or variables, invalid pointers and buffer sizes, inappropriate
calling sequences etc. may crash your application and/or your complete computer. Make sure to
backup your data and/or perform your development work on a dedicated machine that does not
contain valuable data. Note that the library is not re-entrant. This means, it cannot be accessed from
multiple, concurrent processes or threads at the same time. All calls must be made sequentially in the
order shown in the demos.

The C/C++ Demos

The demos are provided in the ‘C’ subfolder. The code is in plain C to provide the smallest common
denominator for C and C++. Consult phlib.h, phdefin.h and this manual for reference on the library
calls. The library functions must be declared as extern "C" when used from C++. This is achieved
most elegantly by wrapping the entire include statements for the library headers:

Page 9

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

extern "C"
{
#include "phdefin.h"
#include "phlib.h"
}

To test any of the demos, consult the PicoHarp manual for setting up your PicoHarp 300 and establish
a measurement setup that runs correctly and generates useable test data. Compare the settings
(notably sync divider, range and CFD levels) with those used in the demo and use the values that
work in your setup when building and testing the demos.

All C demos can be compiled with gcc. They come with a makefile so that a simple call of make in the
respective source folder should readily build the application. PHlib and Libusb are linked dynamically.

The C demos are designed to run purely text based in a console (terminal window). They need no
command line input parameters. They create their output files in their current working directory (*.out).
The output files will be ASCII in case of the standard histogramming demos. The ASCII files will
contain single or multiple columns of integer numbers representing the counts from the histogram
channels. You can use any editor or a data visualization program to inspect the ASCII histograms. For
the TTTR modes the output is stored in binary format for performance reasons. The binary files must
be read by dedicated programs according to the format they were written in. The file read demos
provided for the PicoHarp TTTR data files can be used as a starting point. They cannot be used
directly on the demo output because they expect a file header the demos do not generate. This is
intentional in order to keep the PHLib demos focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. You need to change the mode input
variable going into PH_Initialize to a value of 3 if you want T3 mode. Note that you probably also need
to adjust the sync divider and the resolution in this case.

The C# Demos

The C# demos are provided in the ‘Csharp’ subfolder. They have been tested with Mono 3.2.3 and
4.0.2 (see http://mono-project.com/) under Windows and Linux. The only difference is the library
name, which in principle could also be unified.

Calling a native DLL (unmanaged code) from C# requires the DllImport attribute and correct type
specification of the parameters. Not all types are easily portable. Especially C strings require special
handling. See Calling.txt.

With the C# demos you also need to check wether the hardcoded settings are suitable for your actual
instrument setup. The demos are designed to run in a console window. They need no command line
input parameters. They create their output files in their current working directory (*.out). The output
files will be ASCII in case of the standard and routing demos. For continuous and TTTR mode the
output is stored in binary format for performance reasons. The ASCII files will contain single or
multiple columns of integer numbers representing the counts from the 65536 histogram channels. You
can use any editor or a data visualization program to inspect the ASCII histograms. The binary files
must be read by dedicated programs according to the format they were written in.

The Pascal Demos

Pascal users please refer to the Lazarus branch of the demo directory. Lazarus is a rapid application
development system for Linux and Windows based on the Free Pascal language. It feels very much
like Delphi for Windows but allows developing cross-platform portable programs for Linux and
Windows. The code for the respective demo is in the Delphi project file for that demo (*.DPR). In fact,
the same project can be used with Delphi for Windows, only by changing calling convention and the
library path and name. Lazarus accesses the DPR file through the corresponding LPI file. In order to
make the exports of the library known to your application you have to declare each function in your
Pascal code as ‘external’. This is already prepared in the demo source code. The supplied demos
were tested with Lazarus 0.9.30 and 1.0.8.

Note that Lazarus is somewhat picky as to what it accepts as a library name. It expects a name
starting with lib. It also does not easily allow linking with a library that is not in the default path. In
order to solve both problems, the install script for PHLib creates a link making it also appear under the
alias libph300.so. This is what the Lazarus demos use for accessing phlib.so.

Page 10

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

The Pascal demos are also designed to run purely text based in a console (terminal window). They
need no command line input parameters. They create output files in their current working directory.
The output files will be ASCII in case of the standard histogramming demo. In TTTR mode the output
is stored in binary format for performance reasons. You can use any data visualization program to
inspect the ASCII histograms. The binary files must be read by dedicated programs according to the
format they were written in. The file read demos provided for the PicoHarp TTTR data files can be
used as a starting point. They cannot be used directly on the demo output because they expect a file
header the demos do not generate. This is intentional in order to keep the PHLib demos focused on
the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high
sync rates. You need to change the mode input variable going into PH_Initialize to a value of 3 if you
want T3 mode. At the same time you need to modify your program for an appropriate sync divider and
a suitable range (resolution).

The LabVIEW Demos

The LabVIEW demo VIs are provided in the ‘Labview’ directory. They are contained in LabVIEW
libraries (*.llb). The top level VI is always ‘PicoHarp.vi’. Note that the sub-VIs in the various demos are
not always identical, even though their names may be the same. The files are saved for LabVIEW 8.0
for Linux. Newer versions will probably work but have not been tested (reports welcome).

The LabVIEW demos are the most sophisticated demos here. The standard mode demo to some
extent resembles the standard PicoHarp software with input fields for all settable parameters. Run the
toplevel VI PicoHarp.vi. It will first initialize and calibrate the hardware. The status of initialization and
calibration will be shown in the top left display area. Make sure you have a running TCSPC setup with
sync and detector correctly connected. You can then adjust the sync level until you see the expected
sync rate in the meter below. Then you can click the Run button below the histogram display area. The
demo implements a simple Oscilloscope mode of the PicoHarp. Make sure to set an acquisition time
of not much more than e.g. a second, otherwise you will see nothing for a long time. If the input
discriminator settings are correct you should see a histogram. You can stop the measurement with the
same (Run) button.

The TTTR mode demo for LabVIEW is a little simpler. It provides the same panel elements for setting
parameters etc. but there is no graphic display of results. Instead, all data is stored directly to disk. By
default, the TTTR mode demo is configured for T2 Mode. This will not allow you to work with high sync
rates. You need to change the mode input variable going into to the Initialization VI to a value of 3 if
you want T3 mode. You also need to use an appropriate sync divider and a suitable range (resolution).

To run the TTTR mode demo you start PicoHarp.vi. First set up the Sync and CFD levels. You can
watch the sync rate in a graphic rate meter. Then you can select a measurement time and a file name.
Make sure this is on a path you have suitable permissions for. When you click the Run button a
measurement will be performed, with the data going directly to disk. There is a status indicator
showing the current number of counts recorded. There is also a status LED indicating any FiFo
overrun.

Internally the TTTR mode demo also requires a special note: each TTTR record as returned in the
buffer of PH_TTReadData actually is a DWORD (32bit). However, LabVIEW stores DWORD data
(U32) always in big endian format. On the x86 platform (little endian) this results in reversed bytes
compared to C programs. For consistency with the demo programs for reading TTTR data this byte
reversing of the data going to disk is avoided in the demo by declaring the buffer for PH_TTReadData
as a byte array (hence 4 times longer than the DWORD array). You may instead want to work with a
U32 array if your goal is not storing data to disk but doing some on-line analysis of the TTTR records.
In this case you must initialize the array with 65536 x U32 and change the type of buffer in the library
calls of PH_TTReadData to U32.

The LabVIEW demos access the library routines via the ‘Call Library Function’ of LabVIEW. For details
refer to the LabVIEW documentation. Consult phlib.h and section 10 of this manual for the parameter
types etc.

Strictly observe that the PH_xxxx library calls are not re-entrant. They must be made sequentially and
in the right order. They cannot be called in parallel as is the default in LabVIEW if you place them side
by side in a diagram. Although you can configure each library call to avoid parallel execution, this still
gives no precise control over the order of execution. For some of the calls this order is very important.

Page 11

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Sequential execution must therefore be enforced by sequence structures or data dependency. In the
demos this is e.g. done by chained and/or nested case structures. This applies to all VI hierarchy
levels, so sub-VIs containing library calls must also be executed in correct sequence.

The MATLAB Demos

The MATLAB demos are provided in the ‘Matlab’ directory. They are contained in m-files. You need to
have a MATLAB version that supports the 'calllib' function. We have tested with MATLAB 7.3 but any
version from 6.5 should work. Be very careful about the header file name specified in 'loadlibrary'.
This name is case sensitive and a wrong spelling will lead to an apparently successful load but later
no library calls will work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line
input parameters. They create output files in their current working directory. The output files will be
ASCII in case of the standard histogramming demo and in case of the routing demo. In TTTR mode
the output is stored in binary format for performance reasons. You can use any data visualization
program to inspect the ASCII histograms. The binary files must be read by dedicated programs
according to the format they were written in. The file read demos provided for the PicoHarp TTTR data
files can be used as a starting point. They cannot be used directly on the demo output because they
expect a file header the demos do not generate. This is intentional in order to keep the PHLib demos
focused on the key issues of using the library.

By default, the TTTR mode demo is configured for T2 mode. This will not allow you to work with high
sync rates. You need to change the mode input variable going into PH_Initialize to a value of 3 if you
want T3 mode. At the same time you need to modify your program for an appropriate sync divider and
a suitable binning (resolution).

Page 12

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

8. Advanced Techniques

Using Multiple Devices

Starting from version 2.0 the library is designed to work with multiple PicoHarp devices (up to 8). The
demos always use the first device found. If you have more than one PicoHarp and you want to use
them together you need to modify the code accordingly. At the API level of PHLib the devices are
distinguished by a device index (0..7). The device order corresponds to the order Libusb enumerates
the devices. This can be somewhat unpredictable. It may therefore be difficult to know which physical
device corresponds to the given device index. In order to solve this problem, the library routine
PH_OpenDevice provides a second argument through which you can retrieve the serial number of the
physical device at the given device index. Similarly you can use PH_GetSerialNumber any time later
on a device you have successfully opened. The serial number of a physical PicoHarp device can be
found at the back of the housing. It is a 8 digit number starting with 0100. The leading zero will not be
shown in the serial number strings retrieved through PH_OpenDevice or PH_GetSerialNumber.

It is important to note that the list of devices may have gaps. If you have e.g. two PicoHarps you
cannot assume to always find device 0 and 1. They may as well appear e.g. at device index 2 and 4
or any other index. Such gaps can be due to other PicoQuant devices (e.g. Sepia II) occupying some
of the indices, as well as due to repeated unplugging/replugging of devices. The only thing you can
rely on is that a device you hold open remains at the same index until you close or unplug it.

Note that an attempt at opening a device that is currently used by another process will result in the
error code ERROR_DEVICE_BUSY being returned from PH_OpenDevice. Unfortunately this cannot
be distinguished from a failure to open the device due to insufficient access rights (permissions). Such
a case also results in ERROR_DEVICE_BUSY.

As outlined above, if you have more than one PicoHarp and you want to use them together you need
to modify the demo code accordingly. This requires briefly the following steps: Take a look at the demo
code where the loop for opening the device(s) is. In most of the demos all the available devices are
opened. You may want to extend this so that you 1) filter out devices with a specific serial number and
2) do not hold open devices you don't actually need. The latter is recommended because a device you
hold open cannot be used by other programs.

By means of the device indices you picked out you can then extend the rest of the program so that
every action taken on the single device is also done on all devices of interest, i.e. initialization, setting
of parameters, starting a measurement etc. At the end the demos close all devices. It is recommended
to keep this approach. It does no harm if you close a device that you haven't opened.

Efficient Data Transfer

The TTTR modes are designed for fast real-time data acquisition. TTTR mode is most efficient in
collecting data with a maximum of information. It is therefore most likely to be used in sophisticated
on-line data processing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the PicoHarp 300 uses USB 2.0 bulk transfers. This is
supported by the PC hardware that can transfer data to the host memory without much help of the
CPU. For the PicoHarp this permits data throughput as high as 5 Mcps and leaves time for the host to
perform other useful things, such as on-line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function
PH_TTReadData that accepts a buffer address where the data is to be placed, and a transfer block
size. This block size is critical for efficient transfers. The larger the block size, the better the transfer
efficiency. This is because setting up and completing a transfer costs some fixed amount of time,
independent of the block size. The maximum transfer block size permitted by PHLib is 131072 (128k
event records). It may not under all circumsances be sensible to use the maximum size. The demos
use a medium size of 32768 records.

As noted above, the transfer is implemented efficiently without using the CPU excessively.
Nevertheless, assuming large block sizes, the transfer takes some time. The operating system
therefore gives the unused CPU time to other processes or threads, i.e., it waits for completion of the
transfer without burning CPU time. This wait time is what can also be used for doing ‘useful things’ in

Page 13

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

terms of any desired data processing or storing within your own application. The best way of doing this
is to use multithreading. In this case you design your program with two threads, one for collecting data
(i.e. working with PH_TTReadData) and another for processing or storing the data. Multiprocessor
systems can benefit from this technique even more. Of course you need to provide an appropriate
data queue between the two threads and the means of thread synchronization. Thread priorities are
another issue to be considered. Finally, if your program has a graphic user interface you may need a
third thread to respond to user actions reasonably fast. Again, this is an advanced technique and it
cannot be demonstrated in detail here. Greatest care must be taken not to access PHLib from
different threads without strict control of mutual exclusion and maintaining the right sequence of
function calls. However, the technique allows throughput improvements of 50..100% and advanced
programmers may want to use it. It might be interesting to note that this is how TTTR mode is
implemented in the regular PicoHarp software for Windows, where sustained count rates over 5
millions of counts/sec (to disk) can be achieved on modern PCs.

When working with multiple PicoHarp devices, the overall USB throughput is limited by the host
controller or any hub the devices must share. You can increase overall throughput if you connect the
individual devices to separate host controllers without using hubs. If you install additional USB
controller cards you should prefer PCI-express models. Traditional PCI can become a bottleneck in
itself. However, modern mainboards often have multiple USB host controllers, so you may not even
need extra controller cards. In order to find out how many USB controllers you have and which bus the
individual devices are attached to, you can use lsusb. In case of using multiple devices it is also
beneficial for overall throughput if you use multithreading in order to fetch and store data from the
individual devices in parallel. Again, re-entrance issues must be observed carefully in this case, at
least for all calls accessing the same device.

Working with Very Low Count Rates

As noted above, the transfer block size is critical for efficient transfers. The larger the block size, the
better the transfer efficiency. This is because setting up a transfer costs some fixed amount of time,
independent of the block size. However, it may not under all circumsances be ideal to use the
maximum size. A large block size takes longer to fill. If the count rates in your experiment are very low,
it may be better to use a smaller block size. This ensures that the transfer function returns more
promptly. It should be noted that the PicoHarp has a “watchdog” timer that terminates large transfers
prematurely so that they do not wait forever. The timeout period is approximately 80 ms. This results in
PH_TTReadData returning less than requested (possibly even zero). This helps to avoid complete
stalls even if the maximum transfer size is used with low or zero count rates. However, for fine tuning
of your application it may still be of interest to use a smaller block size. The block size must be an
integer muliple of 512.

Working with Warnings

The library provides routines for obtaining and interpreting warnings about critical measurement
conditions. The mechanism and warning criteria are the same as those used in the regular PicoHarp
software for Windows (see also section 11). In order to obtain and use these warnings in your custom
software you may want to use the library routine PH_GetWarnings. This may help inexperienced users
to notice possible mistakes before stating a measurement or even during the measurement.
It is important to note that the generation of warnings is dependent on the current count rates and the
current measurement settings. It was decided that PH_GetWarnings does not obtain the count rates
on its own, because the corresponding USB calls take some time and might waste too much
processing time. It is therefore necessary that PH_GetCoutrate has been called for all channels
before PH_GetWarnings is called. Since most interactive measurement software periodically calls
PH_GetCoutrate anyhow, this is not a serious complication and avoids redundant USB calls.
The routine PH_GetWarnings only delivers the cumulated warnings in the form of a bit field. In order to
translate this into readable information you can use PH_GetWarningsText. Before passing the bit field
into PH_GetWarningsText you can mask out individual warnings by means of the bit masks defined in
phdefin.h.

Page 14

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

9. Data Types

The PicoHarp programming library PHLib is written in C and its data types correspond to standard
C/C++ data types as follows:

char 8 bit, byte (or character in ASCII)
short int 16 bit, signed integer
unsigned short int 16 bit, unsigned integer
int 32 bit, signed integer
unsigned int 32 bit, unsigned integer
long int 32 bit, signed integer
unsigned long int 32 bit, unsigned integer
float 32 bit, floating point
double 64 bit, floating point

These types are supported by all major programming languages.

Page 15

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

10. Functions exported by PHLib

See phdefin.h for predefined constants given in capital letters here. Return values <0 denote errors.
See errorcodes.h for the error codes.

General Functions

These functions work independent from any device.

int PH_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a PH_xxx function call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error code.
Use these in error handling message boxes, log files, etc.

int PH_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: This is the only function you may call before opening and initializing a device. Use it to ensure compatibility of the library with
your own application. Take this seriously if you do not want to end up in a mess when new versions come out.

Open/Close/Initialize Functions

All functions below are device related and require a device index.

int PH_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int PH_Initialize (int devidx, int mode);

arguments: devidx: device index 0..7
mode: 0 = histogramming,

2 = T2_Mode
3 = T3_Mode

return value: =0 success
<0 error

Note: This call will fail with error code -19 (ERROR_INVALID_OPTION) if you have no license for using the library.
It will also fail with this error code if you try to initialize for TTTR mode without having a license for TTTR mode.

Page 16

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Functions for Initialized Devices

All functions below can only be used after PH_Initialize was successfully called.

int PH_GetHardwareInfo (int devidx, char* model, char* partnum, char* vers); changed in v.3.0

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 16 characters
partnum: pointer to a buffer for at least 8 characters
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_GetBaseResolution (int devidx, double* resolution); changed in v.3.0

arguments: devidx: device index 0..7
resolution: base resolution of the device (passed by reference)

return value: =0 success
<0 error

int PH_GetFeatures (int devidx, int* features); new in v.3.0

arguments: devidx: device index 0..7
features: features of this device (a bit pattern, passed by

reference)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in phdefin.h to probe for a specific feature

int PH_Calibrate (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

int PH_SetInputCFD (int devidx, int channel, int level, int zerocross); changed in v.3.0

arguments: devidx: device index 0..7
channel: number of the input channel (0 or 1)
level: CFD discriminator level in millivolts

minimum = DISCRMIN
maximum = DISCRMAX

level: CFD zero cross in millivolts
minimum = ZCMIN
maximum = ZCMAX

return value: =0 success
<0 error

Note: Values are passed as a positive number although the electrical signals are actually negative.

int PH_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: input rate divider applied at channel 0

(1, 2, 4, or 8)

Page 17

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values <= 10 MHz. It should only be used with sync sources of
stable period. The readings obtained with PH_GetCountRate are corrected for the divider setting and deliver the external
(undivided) rate.

int PH_SetSyncOffset (int devidx, int offset); new in v.3.0

arguments: devidx: device index 0..7
offset: offset (time shift) in ps for that channel

minimum = SYNCOFFSMIN
maximum = SYNCOFFSMAX

return value: =0 success
<0 error

Note: This function can replace an adjustable cable delay. A positive offset corresponds to inserting a cable in the sync input.
See also PH_SetRoutingChannelOffset.

int PH_SetStopOverflow (int devidx, int stop_ovfl, int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

(max. 65,535)

return value: =0 success
<0 error

Note: This setting determines if a measurement run will stop if any channel reaches the maximum set by stopcount. If stop_ofl is 0 the
measurement will continue but counts above 65,535 in any bin will be clipped.

int PH_SetBinning (int devidx, int binning); changed in v.3.0

arguments: devidx: device index 0..7
binning: binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS─1) (largest)

return value: =0 success
<0 error

Note: The binning code corresponds to a power of 2, i.e.

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int PH_SetMultistopEnable (int devidx, int enable); new in v.3.0

arguments: devidx: device index 0..7
enable: 0 = disable

1 = enable (default)

return value: =0 success
<0 error

Note: This is only for special applications where the multistop feature of the PicoHarp is causing complications in statistical analysis.
Ususally it is not required to call this funktion. By default, multistop is enabled after PH_Initialize.

int PH_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: offset in picoseconds (histogramming and T3 mode only)

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: The true offset is an approximation of the desired offset by the nearest multiple of the base resolution. This offset only acts on the
difference between ch1 and ch0 in histogramming and T3 mode. Do not confuse it with the input offsets.

Page 18

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

int PH_ClearHistMem (int devidx, int block);

arguments: devidx: device index 0..7
block: block number to clear

return value: =0 success
<0 error

int PH_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

int PH_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Can also be used before the CTC expires but for internal housekeeping it MUST be called any time you finish a measurement,
even if data collection was stopped internally, e.g. by expiration of the CTC or an overflow.

int PH_CTCStatus (int devidx, int* ctcstatus); changed in v.3.0

arguments: devidx: device index 0..7
ctcstatus: CTC status (passed by reference)

=0 acquisition time still running
>0 acquisition time has ended

return value: =0 success
<0 error

int PH_GetHistogram (int devidx, unsigned int* chcount, int block); changed in v.3.0

arguments: devidx: device index 0..7
chcount: pointer to an array of at least HISTCHAN double

words (32bit)where the histogram data can be stored
block: block number to fetch

(block > 0 meaningful only with routing)

return value: =0 success
<0 error

Note: The current version counts only up to 65,535 (16 bits). This may change in the future.

int PH_GetResolution (int devidx, double* resolution); changed in v.3.0

arguments: devidx: device index 0..7
resolution: resolution at current binning (passed by reference)

return value: =0 success
<0 error

int PH_GetCountRate (int devidx, int channel, int* rate); changed in v.3.0

arguments: devidx: device index 0..7
channel: number of the input channel (0 or 1)
rate: current pulse rate at this channel (passed by reference)

return value: =0 success
<0 error

Note: The hardware rate meters employ a gate time of 100 ms. You must allow at least 100 ms after PH_Initialize or
PH_SetDyncDivider to get a valid rate meter reading. Similarly, wait at least 100 ms to get a new reading. The readings are
corrected for the sync divider setting and deliver the external (undivided) rate. The gate time cannot be changed. The readings
may therefore be inaccurate or fluctuating when the rates are very low. If accurate rates are needed you must perform a full blown
measurement and sum up the recorded events.

Page 19

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

int PH_GetFlags (int devidx, int* flags); changed in v.3.0

arguments: devidx: device index 0..7
flags: current status flags

(a bit pattern, passed by reference)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in phdefin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.
It is also recommended to check for FLAG_SYSERROR to detect possible hardware failures. In that case you may want to call
PH_GetHardwareDebugInfo and submit the results for support.

int PH_GetElapsedMeasTime (int devidx, double* elapsed); changed in v.3.0

arguments: devidx: device index 0..7
elapsed: elapsed measurement time in ms (passed by reference)

return value: =0 success
<0 error

int PH_GetWarnings (int devidx, int* warnings); changed in v.3.0

arguments: devidx: device index 0..7
warnings: warnings, (passed by reference)

bitwise encoded (see phdefin.h)

return value: =0 success
<0 error

Note: Must call PH_GetCoutRates for all channels prior to this call.

int PH_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters
warnings: integer bitfield obtained from PH_GetWarnings

return value: =0 success
<0 error

int PH_GetHardwareDebugInfo (int devidx, char* debuginfo); new in v.3.0

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 16384 characters

return value: =0 success
<0 error

Note: It is recommended to use PH_GetFlags and check for FLAG_SYSERROR to detect possible hardware failures. In that case you
may want to call PH_GetHardwareDebugInfo and submit the results for support.

Page 20

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Special Functions for TTTR Mode

To use these functions, you must have purchased the TTTR mode option. You can use
PH_GetFeatures to probe for it.

int PH_ReadFiFo (int devidx, unsigned int* buffer, int count, int* nactual); changed in v.3.0

arguments: devidx: device index 0..7
buffer: pointer to an array of count dwords (32bit)

where the TTTR data can be stored
count: number of TTTR records to be fetched

(max TTREADMAX)

nactual: number of dwords actually read (passed by reference)

return value: =0 success
<0 error

Note: Must not be called with count larger than buffer size permits. CPU time during wait for completion will be yielded to other
processes/threads. Function will return after a timeout period of ~80 ms, even if not all data could be fetched. Return value
indicates how many records were fetched. Buffer must not be accessed until the function returns. Make sure to call
PH_ReadFiFo in a loop until all data is retrieved. You cannot rely on getting all data in one flush, even if it is less than count.

int PH_SetMarkerEdges (int devidx, int me0, int me1, int me2, int me3);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: PicoHarp devices prior to hardware version 2.0 support only the first three markers. Default after Initialize is “all rising”.

int PH_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3); new in v.3.0

arguments: devidx: device index 0..7
me<n>: enabling of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Note: PicoHarp devices prior to hardware version 2.0 support only the first three markers. Default after Initialize is “all enabled”.

int PH_SetMarkerHoldofftime (int devidx, int holdofftime); new in v.3.0

arguments: devidx: device index 0..7
holdofftime: holdofftime in nanoseconds

return value: =0 success
<0 error

Note: This setting can be used to clean up glitches on the marker signals. When set to X ns then after detecting a first marker edge the
next marker will not be accepted before X ns. Observe that the internal granularity of this time is only about 50 ns. The holdoff
time is set equally for all marker inputs but the holdoff logic acts on each marker independently.

Page 21

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Special Functions for Routing

These functions require a PHR 402 / 403 / 800.

int PH_GetRoutingChannels (int devidx, int* rtchannels); changed in v.3.0

arguments: devidx: device index 0..7
rtchannels: number of routing channels (passed by reference)

return value: =0 success
<0 error

int PH_EnableRouting (int devidx, int enable);

arguments: devidx: device index 0..7
enable: routing state control code

1 = enable routing
0 = disable routing

return value: =0 success
<0 error

Note: This function can also be used to detect the presence of a router.

int PH_GetRouterVersion (int devidx, char* model, char* vers);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 8 characters
vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH_SetRoutingChannelOffset (int devidx, int channel, int offset); new in v.3.0

arguments: devidx: device index 0..7
channel: the channel (0..3) who's offset is to be changed
offset: offset (time shift) in ps for that channel

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This function can be used to compensate small timing delays between the individual routing channels. It is similar to
PH_SetSyncOffset and can replace cumbersome cable length adjustments but compared to PH_SetSyncOffset the adjustment
range is relatively small. A positive number corresponds to inserting cable in that channel.

int PH_SetPHR800Input (int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: router channel to be programmed (0 .. 3)
level: trigger voltage level in mV (─1600 .. 2400)
edge: trigger edge

0 = falling edge,
1 = rising edge

return value: =0 success
<0 error

Note 1: Not all channels may be present.

Note 2: Invalid combinations of level and edge may lock up all channels!

int PH_SetPHR800CFD (int devidx, int channel, int dscrlevel, int zerocross);

arguments: devidx: device index 0..7
channel: router CFD channel to be programmed (0 .. 3)
dscrlevel: discriminator level in mV (0 .. 800)
zerocross: zero crossing level in mV (0 .. 20)

return value: =0 success
<0 error

Page 22

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

11. Warnings

The following is related to the warnings (possibly) generated by the library routine PH_GetWarnings.
The mechanism and warning criteria are the same as those used in the regular PicoHarp software for
Windows and depend on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe
to assume “all is right” just by obtaining no warning. It is also necessary that PH_GetCoutrate has
been called for all channels before PH_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will
occur in all measurement modes. Also, count rate limits for a specific warning may be different in
different modes. The following table lists the possible warnings in the three measurement modes and
gives some explanation as to their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_INP0_RATE_ZERO

No counts are detected at input channel 0. In histo-
gramming and T3 mode this is the sync channel and the
measurement will not work without that signal.

√ √

WARNING_INP0_RATE_TOO_LOW

The count rate at input channel 0 is below 1 kHz and the
sync divider is >1. In histogramming and T3 mode this is
the sync channel and the measurement will not work
without a signal <1 kHz if the sync divider is >1. If your
sync rate is really so low then you do not need a sync
divider >1.

√ √

WARNING_INP0_RATE_TOO_HIGH

You have selected T2 mode and the count rate at input
channel 0 is higher than 5 MHz. The measurement will
inevitably lead to a FiFo overrun. There are rare
measurement scenarios where this condition is expected
and the warning can be disabled. Examples are very
short measurements where the FiFo can absorb all data.

√

WARNING_INP1_RATE_ZERO

No counts are detected at input channel 1. In histo-
gramming and T3 mode this is the photon event channel
and the measurement will yield nothing without this
signal. You may sporadically see this warning if your
detector has a very low dark counts. In that case you may
want to disable this warning.

√ √

WARNING_INP1_RATE_TOO_HIGH

If you have selected T2 mode then this warning means
the count rate at input channel 1 is higher than 5 MHz.
The measurement will inevitably lead to a FiFo overrun.
There are rare measurement scenarios where this
condition is expected and the warning can be disabled.
Examples are very short measurements where the FiFo
can absorb all data.

In histogramming and T3 mode this warning is issued
when the input rate is >10 MHz. This will probably lead to
deadtime artefacts. There are rare measurement
scenarios where this condition is expected and the
warning can be disabled.

√ √ √

Page 23

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Warning Histo Mode T2 Mode T3 Mode

WARNING_INP_RATE_RATIO

This warning is issued in histogramming and T3 mode
when the rate at input 1 is over 5% of the rate at input 0.
This is the classical pile-up criterion. It will lead to
noticeable dead-time artefacts. There are rare
measurement scenarios where this condition is expected
and the warning can be disabled. Examples are
antibunching measurements.

√ √

WARNING_DIVIDER_GREATER_ONE

You have selected T2 mode and the sync divider is set
larger than 1. This is probably not intended. The sync
divider is designed primarily for high sync rates from
lasers and requires a fixed pulse rate at channel 0. In that
case you should use T3 mode. If the signal at channel 0
is from a photon detector (coincidence correlation etc.) a
divider >1 will lead to unexpected results. There are rare
measurement scenarios where this condition is intentional
and the warning can be disabled.

√

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode
when the sync period (1/Rate[ch0]) is longer that the start
to stop time span that can be covered by the histogram or
by the T3 mode records. You can calculate this time span
as follows:
 Histogramming mode: Span = Resolution * 65536
 T3 mode: Span = Resolution * 4096
Events outside this span will not be recorded. There are
some measurement scenarios where this condition is
intentional and the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode
when an offset >0 is set even though the sync period
(1/Rate0) can be covered by the measurement time span
without using an offset. The offset may lead to events
getting discarded. There are some measurement
scenarios where this condition is intentional and the
warning can be disabled.

√ √

If any of the warnings you receive indicate wrong count rates, the cause may be inappropriate input
settings, wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals
with a scope.

Note that all count rate dependent warnings relate to the PicoHarp's native input channels. If you are
using a router, remember that all routing channels share the PicoHarp's input channel 1 and hence
create a cumulated common rate at that channel.

Page 24

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

12. Problems, Tips & Tricks

PC Performance Issues

Performance issues with the library under Linux are the same as with the standard PicoHarp software
for Windows. The PicoHarp and its software interface are a complex real-time measurement system
demanding considerable performance both from the host PC and the operating system. This is why a
reasonably modern CPU (1 GHz min.) and at least 1 GB of memory are recommended. The USB 2.0
interface must be configured correctly and use only high speed rated components. If you intend to
use TTTR mode with streaming to disk you should also have a fast modern hard disk. However, as
long as you do not use TTTR mode, performance issues should not be of severe impact.

Troubleshooting

Troubleshooting should begin by testing your hardware and setup. This is best accomplished by the
standard PicoHarp software for Windows (supplied by PicoQuant). Only if this software is working
properly you should start work with the library under Linux. If there are problems even with the
standard software, please consult the PicoHarp manual for detailed troubleshooting advice.

Under Linux the library will access the PicoHarp device through libusb. You need to make sure that
libusb has been installed correctly. Normally this is readily provided by all recent Linux distributions.
You can use lsusb to check if the device has been detected and is accessible. Please consult the
PicoHarp manual for hardware related problem solutions. Note that an attempt at opening a device
that is currently used by another process will result in the error code ERROR_DEVICE_BUSY being
returned from PH_OpenDevice. Unfortunately this cannot be distinguished from a failure to open the
device due to insufficient access rights (permissions). Such a case also results in
ERROR_DEVICE_BUSY.

You should also make sure your PicoHarp has the right firmware to use the library. The library option
is not free, a license must be purchased. You will not be able to run the demos if you have no license.
In this case they will fail with error code -19 (ERROR_INVALID_OPTION). You can contact PicoQuant
or your local reseller to order the license, which will be shipped very quickly by email in the form of a
firmware update.

To get started, try the readily compiled demos supplied with the library. For first tests take the standard
histogramming demos. If this is working, your own programs should work as well. Note that the hard
coded setings may not be compatible wih your experimental setup. Then the pre-compiled demo may
not work as expected. Only the LabVIEW demo allows to enter the settings interactively.

Version Tracking

While PicoQuant will always try to maintain a maximum of continuity in further hardware and software
development, changes for the benefit of technical progress cannot always be avoided. It may
therefore happen, that data structures, calling conventions or program flow will change. In order to
design programs that will recognize such changes with a minimum of trouble we strongly recommend
that you make use of the functions provided for version retrieval of hardware and library. In any case
your software should issue a warning if it detects versions other than those it was tested with.

New Kernel Versions and Linux Distributions

The library has good chances to remain compatible with upcoming Linux versions. This is because the
interface of libusb is likely to remain unchanged, even if it changes internally. You can even revert to
an earlier version if necessary. Of course we will also try to catch up with new developments that
might break compatibility, so that we will provide upgrades when necessary. However, note that this is
work carried out voluntarily and implies no warranties for future support.

Software Updates

We constantly improve and update the sofware for our instruments. This includes updates of the
configurable hardware (FPGA). Such updates are important as they may affect reliability and
interoperability with other products. The software updates are free of charge, unless major new
functionality is added. It is strongly recommended that you check for updates (see PicoQuant Web
site) before you put effort into programming for a possibly outdated library version.

Page 25

© PicoQuant GmbH PicoHarp 300 PHLib v.3.0 for Linux

Support

The PicoHarp 300 TCSPC system has gone through many iterations of hardware and software
improvement as well as extensive testing. Nevertheless, it is fairly challenging technology and some
glitches may still occur under the myriads of possible PC configurations, operating systems and
application circumstances. We therefore offer you our support in any case of trouble with the system
and ask your help to identify any such problems. Do not hesitate to contact PicoQuant in case of
difficulties with your PicoHarp or the programming library. However, please note that the Linux library
is a free supplement to the Windows version and its development is carried out voluntarily by single
Linux enthusiasts in their spare time. It therefore implies no warranties for other than voluntary
support.

Should you observe errors or unexpected behaviour related to the PicoHarp system, please try to find
a precise and reproducible error situation. E-mail a detailed description of the problem and relevant
circumstances to support@picoquant.com. Please include all your PC and operating system details.
Complete information will help us to help you more quickly.

PicoQuant GmbH
Unternehmen für optoelektronische Forschung und Entwicklung
Rudower Chaussee 29 (IGZ), 12489 Berlin, Germany

Tel: +49 / (0)30 / 6392 6929
Fax: +49 / (0)30 / 6392 6561
e-mail: info@picoquant.com
WWW: http://www.picoquant.com

All information given here is reliable to our best knowledge. However, no responsibility is assumed for

possible inaccuracies or omissions. Specifications and external appearence are subject to change without notice.

Page 26

