
PicoHarp 330

High Resolution Time–Correlated
Single Photon Counting System
and High-Speed Time Tagger

User's Manual

Version 2.0.0.0

PH330Lib – Programming Library
for Custom Software Development

under Linux

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Table of Contents
1. Introduction.. 3

2. General Notes.. 4

2.1. Scope and Compatibility... 4

2.2. What’s new in this Version...4

2.3. Warranty and Legal Terms...5

3. Installation of the Library.. 6

3.1. Requirements... 6

3.2. Device Access Permissions...6

3.3. Installing the Library... 6

3.4. Installing the Demo Programs..7

4. The Demo Applications.. 8

4.1. Functional Overview... 8

4.2. The Demo Applications by Programming Language...9

5. Advanced Techniques.. 13

5.1. Efficient Data Transfer.. 13

5.2. Instant TTTR Data Processing...13

5.3. Working with Warnings... 14

5.4. Hardware Triggered Measurements...14

5.5. Working with Event Filtering...15

5.6. Using Multiple Devices... 16

6. Problems, Tips & Tricks.. 17

6.1. PC Performance Requirements...17

6.2. USB Interface... 17

6.3. Troubleshooting... 17

6.4. Version tracking... 17

6.5. New Linux Versions.. 18

6.6. Software Updates... 18

6.7. Bug Reports and Support... 18

7. Appendix.. 19

7.1. Data Types... 19

7.2. Functions Exported by PH330Lib.so..19

7.2.1. General Functions.. 20

7.2.2. Device Related Functions..20

7.2.3. Functions for Use on Initialized Devices...21

7.2.4. Special Functions for TTTR Mode..30

7.2.5. Special Functions for TTTR Mode with Event Filtering...31

7.3. Warnings.. 34

Page 2

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

1. Introduction
The PicoHarp 330 is a cutting edge Time-Correlated Single Photon Counting (TCSPC) system and time tag-
ger with USB 3.0 interface. Its new integrated design provides a flexible number of high performance input
channels at very reasonable cost and enables innovative measurement approaches. The timing circuits allow
high measurement rates up to over 80 million counts per second (Mcps) with an excellent time resolution of
1 ps, a single channel time jitter as small as 2 ps r.m.s. and a dead-time of only 680 ps. The latest Model Pi-
coHarp 330 4P also features a very high precision internal clock source with a frequency accuracy of ±300
ppb and a frequency stability of ±10 ppb. The USB interface provides very high throughput as well as ‘plug
and play’ installation.

The device’s input triggers are adjustable for a wide range of input signals.They can be configured as Con-
stant Fraction Discriminators (CFDs) or as programmable edge triggers, the latter even for both polarities.
These specifications qualify the PicoHarp 330 for use with Superconducting Nanowire Single Photon Detec-
tors (SNSPD), Single Photon Avalanche Diodes (SPADs), Hybrid Photodetectors (HPD), and Photomultiplier
Tubes (PMT). Depending on detector and excitation source the FWHM of the overall Instrument Response
Function (IRF) can be as small as 15 ps. The PicoHarp 330 can be purchased with one or two timing inputs
and one synchronization (sync) input. The use of these inputs is very flexible. In fluorescence lifetime applica-
tions the sync channel is typically used as a synchronization input from a laser. The other inputs are then
used for photon detectors. Alternatively, notably in quantum optics applications, all inputs including the sync
input can be used for photon detectors.

The PicoHarp 330 can operate in various modes to adapt to different measurement needs. The standard his-
togram mode performs real–time histogramming in host memory. Two different Time–Tagged–Time–Resolved
(TTTR) modes allow recording each photon event on separate, independent channels, thereby providing un-
limited flexibility in off–line data analysis such as burst detection and time–gated or lifetime weighted Fluores-
cence Correlation Spectroscopy (FCS) as well as picosecond coincidence correlation, using the individual
photon arrival times. The PicoHarp 330 is furthermore supported by a variety of accessories such as pre–
amplifiers, signal adaptors and detector assemblies from PicoQuant.

For more information on the PicoHarp 330 hardware and software please consult the PicoHarp 330 manual.
For details on the method of Time–Correlated Single Photon Counting, please refer to our TechNote on TC-
SPC.

The PicoHarp 330 standard software provides functions such as the setting of measurement parameters, dis-
play of results, loading and saving of measurement parameters and histogram curves. Important measure-
ment characteristics such as count rate, count maximum and position, histogram width (FWHM) are dis-
played continuously. While these features will meet many of the routine requirements, advanced users may
want to include the PicoHarp’s functionality in their own automated measurement systems with their own soft-
ware. In particular where the measurement must be interlinked or synchronized with other processes or in-
struments this approach may be of interest. For this purpose a programming library is provided as a Dynamic
Link Library (DLL) for Windows (see separate manual) and as a shared library for Linux described here.

The library supports custom programming in virtually all major programming languages, notably C / C++, C#,
Pascal, Python, Rust, LabVIEW and MATLAB. This manual describes the installation and use of the PicoHarp
330 programming library and explains the associated demo programs. Please read both this library manual
and the PicoHarp 330 manual before beginning your own software development with the library. The Pico-
Harp 330 is a sophisticated real–time measurement system. In order to work with the system using the lib-
rary, sound knowledge in your chosen programming language is required.

Page 3

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

2. General Notes

2.1. Scope and Compatibility
This manual solely covers the programming library PH330Lib for the product model PicoHarp 330. The hard-
ware and software of the seminal predecessor product PicoHarp 300 is significantly different from that of the
PicoHarp 330. There is no software compatibility across the two products. Please do not confuse the two
lines. The PicoHarp 300 has its own manual and its own software. Also note that here in this document we
use the common name of the library PH330Lib (as derived from the Windows version) while the actual
shared library for Linux is named libph330.so in order to meet the Linux conventions.

The PicoHarp 330 programming library for Linux is suitable for the “x86-64” processor architecture only. We
dropped support for 32-bit systems due to the fact that hardly any Linux distribution still offers it.

The library has been tested with gcc 11.4.0 and 13.2.0, Mono 6.8.0 and 6.12.0, Python 3.11.6 and 3.12.3, as
well as with Lazarus 3.0 (FreePascal 3.2.2) and Rustc 1.79.0 (+cargo 1.79.0). The demos for LabVIEW and
Matlab have only been tested under Windows using LabVIEW 2020 and MATLAB R2019a, due to our lack of
the Linux versions. If you happen to test with Linux versions of LabVIEW 2020 or MATLAB please let us know
the results.

This manual assumes that you have read the PicoHarp 330 manual. References to it will be made where ne-
cessary. It is also assumed that you have solid experience with the chosen programming language. Our sup-
port will not teach programming fundamentals.

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may still change in future versions without advance notice. Users must maintain appropriate version checking
in order to avoid incompatibilities. There is a function call that you can use to retrieve the version number
(see section 7.2). Note that this call returns only the major two digits of the version string (e.g. presently 2.0).
The library actually has two further sub–version digits, so that the complete version number has four digits
(e.g. presently 2.0.0.0). The complete version number including the build date will be shown upon running the
installtion script. If you need to check it later you can run the command:

strings /usr/local/lib64/ph330/libph330.so | grep "LIBPH330 VERSION"

The two sub–version digits are used to identify intermediate versions that may have been released for small
updates or bug fixes. The interface of releases with identical major version will remain the same. The minor
version is typically incremented when there are new features or functions added without breaking compatibilty
in regard to the original interface of the corresponding major release. The rightmost digit of the complete ver-
sion number usually increments to indicate bugfix releases of otherwise identical interface and functionality.

2.2. What’s new in this Version
Version 2.0 is the second release of PH330Lib and primarily provided to support the new PicoHarp 330 4P
with four input channels. The previous model with two input channels is of course also supported. A very use-
ful new feature of PH330Lib v. 2.0 is the API call PH330_SaveDebugDump. It is provided to help debugging
gateware issues by letting the user save a snapshot of the device’s internal FPGA states to a file that then
can be submitted for support.

Users of other PicoQuant TCSPC systems and their programming libraries will find PH330Lib very familiar.
Compared to such earlier products, e.g. the MultiHarp family, the interface remains conceptually unchanged,
except that support for new or extended features such as the programmable input configuration required the
introduction of some new API calls.

Page 4

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

2.3. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi-
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial dam-
ages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or performance
of this software and associated documentation.

License and Copyright Notice

With the PicoHarp 330 hardware product you have purchased a license to use the PicoHarp software. You
have not purchased any other rights to the software itself. The software is protected by copyright and intellec-
tual property laws. You may not distribute the software to third parties or reverse engineer, decompile or dis-
assemble the software or part thereof. You may use and modify demo code to create your own software. Ori-
ginal or modified demo code may be re–distributed, provided that the original disclaimer and copyright notes
are not removed from it. Copyright of this manual and on–line documentation belongs to PicoQuant GmbH.
No parts of it may be reproduced, translated or transferred to third parties without written permission of Pi-
coQuant GmbH.

Products and corporate names appearing in this manual may or may not be registered trademarks or subject
to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks. They are
used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Acknowledgements

The PicoHarp 330 programming library for Linux uses Libusb to access the PicoHarp 330 USB devices.
Libusb is licensed under the LGPL which allows a fairly free use even in commercial projects. For details and
precise terms please see http://libusb.info. In order to meet the license requirements a copy of the LGPL as
appliccable to Libusb is provided as part of the distribution archive. The LGPL does not apply to the PicoHarp
330 programming library as a whole.

For this version of the library we also gratefully acknowledge the use of GNU/Linux as a development plat-
form, as well as using the Tux logo (thanks to Larry Ewing, lewing@isc.tamu.edu and The GIMP) on the title
page of this manual.

Page 5

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

3. Installation of the Library

3.1. Requirements
Supported hardware is at this time solely the “x86-64” CPU platform as found in the majority of recent PCs.
Support for 32-bit platforms has been dropped, for the simple reason that all major Linux distributions are no
longer supporting it. Required is a PC with USB 3.0*), at least two CPU cores, 2 GHz CPU clock and 4 GB of
memory. For optimal TTTR mode throughput to disk a fast solid state disk is recommended.

The library is designed to run on Linux kernel versions 5.0 or higher. It has been tested with the following dis -
tributions:

Ubuntu 20.04.3 LTS (kernel 5.15.0)
Ubuntu 22.04.3 LTS (kernel 5.15.0)
Ubuntu 24.04.3 LTS (kernel 6.8.0)

Using the library requires libusb (https://libusb.info/). The formally required version is 1.0 or higher, tested ver-
sions were 1.0.23, 1.0.25 and 1.0.27. Libusb is typically installed by default on all major Linux distributions.

It is recommended to start your work by using the standard interactive PicoHarp 330 data acquisition soft-
ware under Windows or Linux with Wine. This will give you a better understanding of the instrument’s opera-
tion before attempting your own programming efforts. It also ensures that your optical/electrical setup is work-
ing.

3.2. Device Access Permissions
For device access through libusb suitable permissions for the device must be granted to the normal user,
otherwise only the super-user root will have access. Recent Linux distributions use udev to handle this. For
automated setting of the device access permissions with udev you can add an entry to the set of rules files
that are contained in /etc/udev/rules.d. Udev processes these files in alphabetical order. The default
rule files usually carry names starting with a number. Don't change these files as they could be overwritten
when you upgrade your system. Instead, put your custom rule for the PicoHarp 330 in a separate file. The
typical content of this file should be:

ATTR{idVendor}=="0d0e", ATTR{idProduct}=="0015", MODE="666"

A suitable rules file PicoHarp330.rules is provided in the folder udev under the unpacked distribution
folder. You can simply copy it to the /etc/udev/rules.d folder. The install script in the same folder does
just this. Note that this requires root permissions. As a normal user you must run it preceded with sudo. After
that you need to disconnect and reconnect the device to get access.

If you have issues obtaining permissions recall that the name of the rules file is important. Each time a device
is detected by the udev system, the files are read in alphabetical order until a match is found. Different Linux
distributions may use different rule file names for various categories. If there happen to be later rules that are
more general (applying to a whole class of devices) they may override your custom rule and the desired
access rights. It is therefore important that you use a rules file named such that it gets evaluated after the
general case. The default naming PicoHarp330.rules most likely ensures this but if you see access
problems you may want to check.

Note that the setting MODE="666" is quite permissive for all users. If you prefer tighter security regarding device
access please study the documentation of udev and/or the recommendations of your distribution for handling
USB device access, e.g. employing user classes with suitable access rights.

3.3. Installing the Library

*) USB 3.0 was later renamed to USB 3.1 Gen 1 and is now called USB 3.2 Gen 1

Page 6

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Starting with version 2.0 the PicoHarp 330 software pack is no longer provided on physical media. Please
download the software pack from the PicoQuant website at https://www.picoquant.com/downloads. On the
download page scroll down to the category TCSPC and Time Tagging Electronics and select Pico-
Harp 330 - Operation Software. The download will be packed in a ZIP-File. Please unzip this file to a
temporary hard disk location of your choice. You will find a folder strucure with multiple items where you must
navigate to the sub-folder PH330Lib v.X.X.X.X\Linux\. The library package for Linux is provided there
as a gzipped tar file. Unpack this file to a location of your choice.

The shared library as such is provided as a binary file. By default it is assumed that it resides under /usr/
local/lib64/ph330. This is not a strict requirement but it is where the demo programs will look for the lib-
rary files and therefore it is recommended to keep this location.

The shell script install in the unpacked directory library does the directory creation and installation in
one step. Just run it preceded with sudo at the command prompt from within the library directory. The
install script also takes care of the variations of different Linux distributions where the x64 library paths use
either usr/lib/ or usr/lib64. This is done by creating symbolic links rather than copying the library to
multiple places.

After installation the library is ready to use and can be tested with the demos provided. On some distributions
you may still need to adjust the library path and/or access permissions. If you want to install the library in a
different place and/or if you want to simplify access to the library you can add the chosen path to
/etc/ld.so.conf and/or to the path list in the environment variable LD_LIBRARY_PATH. This also
circumvents the issue of varying default locations mentioned above.

Note for SELinux: If upon linking with libph330.so you get an error “cannot restore segment prot after
reloc” you need to adjust the security settings for mhlib.so. As root you need to run:

chcon -t texrel_shlib_t /usr/local/lib/ph330/libph330.so

3.4. Installing the Demo Programs
The demos can be installed by simply copying the entire directory demos from the tar archive to a disk loca-
tion of your choice. This need not be under the root account but you need to ensure proper file access per-
missions. While the gcc compiler for the C demos is part of all linux distributions, you will typically need to ob-
tain and install Python, Mono, Lazarus, Matlab or LabVIEW for Linux separately if you wish to use these pro-
gramming environments.

Page 7

https://www.picoquant.com/downloads

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

4. The Demo Applications

4.1. Functional Overview
Please note that all demo code provided is correct to the best of our knowledge. However, we must disclaim
all warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than educa-
tion purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This is
why most of the demos have a minimalistic user interface and / or must be run from the command line. For
the same reason, the measurement parameters are mostly hard–coded and thereby fixed at compile time. It
is therefore necessary to change the source code and re–compile the demos in order to run them in a way
that is matched to your individual measurement setup. Running them unmodified will probably result in use-
less data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc. In order to
understand these settings it is strongly recommended that you read the PicoHarp 330 manual and try them
out using the regular PicoHarp 330 software for Windows.

For the reason of simplicity, the demos will always only use the first PicoHarp 330 device they find, although
the library can support multiple devices. If you wish to use more than one PicoHarp 330 at the same time you
need to modify the code accordingly. See section 5.6 on this topic.

There are demos for C / C++, C#, Pascal, Python, Rust, LabVIEW and MATLAB. For each of these program-
ming languages / systems there are different demo versions for various measurement modes:

Histogramming Mode Demos

These demos show how to use the standard measurement mode for real-time histogramming. These are the
simplest demos and the best starting point for your own experiments. TCSPC histogramming is easy to use
and useful in typical fluorescence decay measurements as well as in basic quantum optics experiments. The
time differences between sync input and the channel inputs are calculated in real-time and put in histograms
for each channel.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits sophisticated data analysis methods, such as single molecule burst detection,
the combination of fluorescence lifetime measurement with FCS and picosecond coincidence correlation or
even Fluorescence Lifetime Imaging (FLIM).

The PicoHarp 330 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. For details on the two modes, please refer to your
PicoHarp manual. In TTTR mode it is also possible to record external TTL signal transitions as markers in the
TTTR data stream (see the PicoHarp 330 manual) which is typically used e.g., for FLIM.

Because TTTR mode requires real–time processing and / or real–time storing of data, the TTTR demos are
more demanding both in programming skills and computer performance. Also consider the speed perform-
ance of your programming language. Interpreted Python and Matlab, for example, are very slow. For more in-
formation on TTTR mode consult the corresponding section in your PicoHarp 330 manual.

Note that you must not call any of the PH330_Setxxx routines while a TTTR measurement is running. The
result would potentially be loss of events in the TTTR data stream. Changing settings during a measurement
makes no sense anyway, since it would introduce inconsistency or temporal incoherence in the collected
data.

Details on how to interpret and process the TTTR records can be studied in the advanced demos (see be -
low). You may also consult the PTU file demo code installed together with the regular PicoHarp 330 software
under Windows or Wine.

Page 8

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Advanced Demos

For several programming languages there are also advanced demos to show hardware triggered histogram
measurements (see section 5.4) or instant processing (see section 5.2) and filtering of TTTR data streams
(section 5.5). In case of LabVIEW there is an advanced demo allowing interactive input of most parameters
on the fly.

4.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, C#, Pascal, Python, Rust, LabVIEW and MATLAB. For each
of these programming languages (except Rust) there are different demo versions for the measurement
modes listed in the previous section. They are not 100% identical. For some programming languages (C, Py-
thon, Delphi, C#, LabVIEW) there are also some advanced demos, typically residing in a subfolder ad-
vanced. In this context please see section 5 on advanced techniques.

This manual explains the special aspects of using the PicoHarp 330 programming library, it does NOT teach
you how to program in the chosen programming language. We strongly recommend that you do not choose
to develop a software project with the PicoHarp 330 library as your first attempt at programming. You will also
need some knowledge about shared library concepts and related Linux conventions. The ultimate reference
for details about how to use the library is in any case the source code of the demos and the header files of
the library (ph330lib.h and ph330defin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application or get the device locked up so that you need to restart it. Also
note that the DLL is not re–entrant w.r.t. an individual device instance. This means, it cannot be accessed
from multiple, concurrent processes or threads at the same time unless separate device instances are being
used. All calls to one device instance must be made sequentially. The order of the calls is to some extent flex-
ible, e.g. when parameters are set. Some other calls such as initialization, start and stop of measurements
obviously must follow in a meaningful order. You may preferably want to stick to the order shown by the
demos.

The C / C++ Demos

These demos are provided in the C subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult ph330lib.h, ph330defin.h and this manual for reference on the
library calls. The library functions must be declared as extern "C" when used from C++. This is achieved
most elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "ph330defin.h"

 #include "ph330lib.h"

}

To test any of the demos, consult the PicoHarp 330 manual for setting up the device and establish a meas-
urement setup that runs correctly and generates useable test data. This is best done with the regular Pico-
Harp 330 software under Windows or under Linux with Wine. Compare the settings (notably sync divider, bin-
ning and trigger levels) with those used in the demo and use the values that work in your setup when building
and testing the demos. Observe the mode input variable going into PH330_Initialize. It makes a differ-
ence if you run T2 or T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For
meaningful measurements you will need to adjust the sync divider and the resolution (binning) dependent on
your choice of mode.

The C demos are designed to run from the command line in a console or terminal window. They need no
command line input parameters. The output files will be ASCII–readable only in case of the standard histo-
gramming demos and most of the advanced demos. For the histogramming demo, the output files will con-
tain multiple columns (one per channel) of integer numbers representing the counts in the histogram bins.
You can use any editor or a data visualization program to inspect the histograms. In the simplest TTTR mode
demo the output is stored in binary format for simplicity and performance reasons. The binary files must be
read by dedicated programs according to the format they were written in. The file demos (provided by way of

Page 9

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

the regular PicoHarp 330 software installation under Windows or Wine) for reading the PicoQuant TTTR data
files (.PTU) and the advanced demos tttrmode_instant_processing can be used as a starting point to
learn this. The file read demos cannot be used directly on the demo output because they expect a file header
the demos do not generate. This is intentional in order to keep the demos focused on the key issues of using
the library.

The C# Demos

The C# demos are provided in the Csharp subfolder. They have been tested with Mono.

Calling a native library (unmanaged code) from C# requires the DllImport attribute and correct type spe-
cification of the parameters. Not all types are easily portable. Especially C strings require special handling.
The demos show how to do this.

With the C# demos you also need to check whether the hard-coded settings are suitable for your actual in -
strument setup. The demos are designed to run in a terminal window. They need no command line input
parameters. They create their output files in their current working directory. The output files will be ASCII in
case of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the
output is stored in binary format for simplicity and performance reasons. The ASCII files of the histogramming
demos will contain single or multiple columns of integer numbers representing the counts from the histogram
channels. You can use any editor or a data visualization program to inspect the ASCII histograms. The binary
files must be read by dedicated programs according to the format they were written in. The file read demos
provided for the PicoQuant TTTR data files (.PTU) and the advanced demo tttrmode_instant_pro-
cessing can be used as a starting point to learn this. The file read demos cannot be used directly on the
demo output because they expect a file header the demos do not generate. This is intentional in order to
keep the PH330Lib demos focused on the key issues of using the library.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Pascal/ Lazarus Demos

Users of FreePascal / Lazarus please refer to the Pascal folder. The source code for Delphi (Windows) and
Lazarus is identical. Everything for the respective Delphi demo is in the project file for that demo (*.DPR).
Lazarus users can use the *.LPI files that refer to the same *.DPR files.

In order to make the exports of mhlib.so known to your application you have to declare each function in
your Pascal code as ‘external’. This is already prepared in the demo source code.

The Delphi / Lazarus demos are also designed to run from the command line. They need no input paramet-
ers. They create output files in their current working directory. The output files of the will be ASCII in case of
the histogramming demo and most of the advanced demos. In the simplest TTTR mode demo the output is
stored in binary format for simplicity and performance reasons. You can use any data visualization program to
inspect the ASCII histograms. The binary files must be read by dedicated programs according to the format
they were written in. The file read demos for the regular PicoQuant TTTR data files (.PTU) and the advanced
demo tttrmode_instant_processing can be used as a starting point to learn this. The file read demos
cannot be used directly on the demo output because they expect a file header the demos do not generate.
This is intentional in order to keep the PH330Lib demos focused on the key issues of using the library.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Python Demos

The Python demos are in the Python folder. Python users should start their work in histogramming mode
from histomode.py. The code should be fairly self explanatory. If you update to a new library version
please check the function parameters of your existing code against ph330lib.h in the PH330Lib installation
directory. Note that special care must be taken where pointers to C–arrays are passed as function argu-
ments.

Page 10

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

The Python demos create output files in their current working directory. The output file will be readable text in
case of the standard histogramming demo and most of the advanced demos. The histogramming demo out-
put files will contain columns of integer numbers representing the counts from the histogram channels. You
can use any data visualization program to inspect the histograms. In the simplest TTTR mode demo the out-
put is stored in binary format for performance reasons. The binary files must be read by dedicated programs
according to the format they were written in. The file read demos for the regular PicoQuant TTTR data files
(.PTU) and the advanced demo tttrmode_instant_processing can be used as a starting point to learn
this. The file read demos cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the PH330Lib demos focused on the key issues of
using the library. Note that even if it may be tempting to directly use the advanced demo tttrmode_in-
stant_processing you should not do this routinely. It creates very large files and throughput with inter-
preted Python is very poor.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The LabVIEW Demos

The LabVIEW demos for Linux are identical with the LabVIEW demos for Windows. They automatically detect
the operating system and select the appropriate library name and path. Unfortunately we do not have Lab-
VIEW for Linux, so this feature is untested under Linux. Pleas kindly report success or error if you happen to
work with LabVIEW for Linux.

The first LabVIEW demo (1_SimpleDemo_MHHisto.vi) is very simple, demonstrating the basic usage and
calling sequence of the provided SubVIs encapsulating the library functionality, which are assembled inside
the LabVIEW library mhlib_x86_x64_UIThread.llb. The demo starts by calling some of these library
functions to setup the hardware in a defined state and continues with a measurement in histogramming mode
by calling the corresponding library functions inside a while-loop. Histograms and count rates for all available
hardware channels are displayed on the front panel in a waveform graph (you might have to select Auto-
Scale for the axes) and numeric indicators, respectively. The measurement is stopped if either the acquisi -
tion time has expired, if an error occurs (which is reported in the error out cluster), if an overflow occurs or if
the user hits the STOP button.

The second demo for histogramming mode (2_AdvancedDemo_MHHisto.vi) is a more sophisticated one
allowing the user to control all hardware settings “on the fly”, i.e. to change settings like acquisition time
(Acqu. ms), resolution (Resol. ms), offset (Offset ns in Histogram frame), number of histogram bins (Num
Bins), etc. before, after or while running a measurement. In contrast to the first demo settings for each avail-
able channel (including the Sync channel) can be changed individually (Settings button) and consecutive
measurements can be carried out without leaving the program (Run button; changes to Stop after pressing).
Additionally, measurements can be done either as “single shot” or in a continuous manner (Conti. Checkbox).
Various information are provided on the front panel like histograms and count rates for each available (and
enabled) channel as waveform graphs (you might have to select AutoScale for the axes), Sync rate,
readout rate, total counts and status information in the status bar, etc. In case an error occurs a popup win -
dow informs the user about that error and the program is stopped. The program structure of this demo is
based upon the National Instruments recommendation for queued message and event handlers for single
thread applications. Some comments inside the source code should help the user to get an overview of the
program and to facilitate the development of customized extensions.

The third LabVIEW demo (3_AdvancedDemo_MHT3.vi) is the most advanced one and demonstrates the
usage of T3 mode including real-time evaluation of the collected TTTR records. The front panel resembles
the second demo but in addition to the histogram display a second waveform graph (you might have to select
AutoScale for the axes) also displays a time chart of the incoming photons for each available (and enabled)
channel with a time resolution depending on the Sync rate and the entry in the Resol. ms control inside the
Time Trace frame (which can be set in multiples of two). In contrast to the second demo there is no control
to set an overflow level or the number of histogram bins, which is fixed to 32.768 in T3 mode. Also in addition
to the acquisition time (called T3Acq. ms in this demo; set to 360.000.000 ms = 100 h by default) a second
time (Int.Time ms in Histogram frame) can be set which controls the integration time for accumulating a
histogram. The program structure of this demo extends that of the second demo by extensive use of Lab -
VIEW type-definitions and two additional threads: a data processing thread (MH_DataProcThread.vi) and
a visualization thread. The communication between these threads is accomplished by LabVIEW queues.

Page 11

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Thereby the FiFo read function (case ReadFiFo in UIThread) can be called as fast as possible without any
additional latencies from data processing workload.

Some comments inside the source code should help the user to get an overview of the program and to facilit -
ate the development of customized extensions. Please note that due to performance reasons some of the
SubVIs inside MH_DataProcThread.vi have been inlined for performance, so that no debugging is pos-
sible on these SubVIs.

Program specific SubVIs and type-definitions used by the demos are organized in corresponding sub-folders
inside the demo folder (here relating to the installed MHLib package for Windows). General helper functions
and type-definitions as well as encapsulating LabVIEW libraries (*.llb) can be found in the _lib folder (con-
taining further sub-folders) inside the demo folder. In order to facilitate the use of all library functions, addi -
tional VIs called MH_AllDllFunctions_xxx.vi have been included. These VIs are not meant to be ex-
ecuted but should only give a structured overview of all available library functions and their required context.

Please note:

In addition to the library used by the demos (mhlib_x86_x64_UIThread.llb) a second LabVIEW library
(llb) is included allowing the library calls to be executed in any thread of LabVIEWs threading engine
(mhlib_x86_x64_AnyThread.llb). This llb is intended for time critical applications where user actions on
the front panel (like e.g., resizing or moving) must not affect the execution of a data acquisition thread con-
taining these library functions (please refer to “Multitasking in LabVIEW”: http://zone.ni.com/reference/en-
XX/help/371361P-01/lvconcepts/multitasking_in_labview/). When using this llb you have to make sure that all
library functions are called in a sequential order to avoid errors or even program crashes. Also be aware that
library functions in mhlib_x86_x64_AnyThread.llb have the same names as in
mhlib_x86_x64_UIThread.llb and opening both libraries at the same time would lead to name conflicts.
Therefore, only experienced users should use mhlib_x86_x64_AnyThread.llb.

The MATLAB Demos

The MATLAB demos are provided in the MATLAB folder. They are contained in .m files. You need to have a
MATLAB version that supports the loadlibrary and calllib commands. The earliest version we have
tested in this regard is MATLAB 7.3 (under Windows) but any version from 6.5 on should work. For your spe-
cific version of MATLAB, please check the documentation of the MATLAB command loadlibrary as to
whether and how it works. Be careful about the header file name specified in loadlibrary. The names are
case sensitive and spelling errors will lead to an apparently successful load - but later no library calls will
work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for simplicity and performance
reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files from
TTTR mode must be read by dedicated programs according to the format they were written in. The file read
demos for the regular PicoQuant TTTR data files (.PTU) can be used as a starting point. They cannot be
used directly on the binary demo output because they expect a file header the demos do not generate. This is
intentional in order to keep the PH330Lib demos focused on the key issues of using the library. The file demo
code can (with minor adaptions) in principle be used to process the TTTR records on the fly. However, MAT-
LAB scripts are relatively slow compared to properly compiled code. This may impose throughput limits. You
might want to consider compiling Mex files instead. In this case please study the advanced demos
tttrmode_instant_processing (C, Python, Delphi, C#) which can be used as a starting point to learn
this.

Observe the mode input variable going into PH330_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Rust Demo

For Rust there is currently only one demo for simple TTTR mode data recording. For ambitious programmers
this should be sufficient as a starting point to also port the more advanced demos from C to Rust.

Page 12

http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/
http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/multitasking_in_labview/

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

5. Advanced Techniques

5.1. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the PicoHarp 330 uses USB bulk transfers. This is supported by
the PC hardware that can transfer data to the host memory without much help of the CPU. For the PicoHarp
330 this permits data throughput as high as 9 Mcps (USB 2.0) or even up to 90 Mcps (USB 3.0) and leaves
time for the host to perform other useful things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function PH330_ReadFiFo
that accepts a buffer address where the data is to be placed. The memory block size is fixed and must
provide space for 1,048,576 event records. However, the actual transfer size will depend on how much data
was available in the device’s FIFO buffer. The call will typically return after about 10 ms but possibly quicker if
no more data is available. The latency behavior at input rates close to zero is controlled by
PH330_SetOflCompression. The actual time to return can also vary due to USB overhead and unpredict-
able Windows latencies, especially when the PC or the USB connection is slow.

As noted above, the transfer is implemented efficiently without excessive CPU load. Nevertheless, assuming
large block sizes, the transfer takes some time. Linux therefore gives the unused CPU time to other pro-
cesses or threads i.e. it waits for completion of the transfer without burning CPU time. This wait time is what
can also be used for doing ‘useful things’ in terms of any desired data processing or storing within your own
application. The proper way of doing this is to use multi–threading. In this case you design your program with
two threads, one for collecting the data (i.e. working with PH330_ReadFiFo) and another for processing or
storing the data. Multiprocessor systems can benefit from this technique even more. Of course you need to
provide an appropriate data queue between the two threads and the means of thread synchronization.
Thread priorities are another issue to be considered. Finally, if your program has a graphic user interface you
may need a third thread to respond to user actions reasonably fast. Again, this an advanced technique and it
cannot be demonstrated in all detail here. Currently only the most advanced LabVIEW demo uses this tech-
nique. Greatest care must be taken not to access the PH330Lib routines from different threads without strict
control of mutual exclusion and maintaining the right sequence of function calls, unless the threads act on dif -
ferent devices. However, the technique allows significant throughput improvements and advanced program-
mers may want to use it. It might be interesting to note that this is how TTTR mode is implemented in the reg -
ular PicoHarp 330 software, where sustained count rates up to 90 Mcps can be handled.

When working with multiple devices, the overall USB throughput is usually limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without sharing hubs. If you install additional USB controller cards you should prefer
fast PCI–express models. However, modern mainboards often have multiple USB host controllers, so you
may not even need extra controller cards. In case of using multiple devices it is also beneficial for overall
throughput if you use multi–threading in order to fetch and store data from the individual devices in parallel.
Again, re–entrance issues must be observed carefully in this case, at least for all calls accessing the same
device.

5.2. Instant TTTR Data Processing
As outlined earlier, collecting TTTR mode streams is time critical when data rates are high. This is why such
streams are often just written to disk and then only subsequently post-processed. Nevertheless there are cir-
cumstances where it is desirable to process the data instantly “on the fly” as it arrives. This may be for the
purpose of an instant preview or for data reduction. The advanced LabVIEW demo nicely demonstrates how
to obtain an instant preview. This requires interpreting and bitwise dissecting the TTTR data records as well
as correcting for overflows. In order to demonstrate this also for other programming languages there are ad-
vanced demos in the subfolders tttrmode_instant_processing (C, Python, Delphi, C#). These demos
do not write binary output but instead perform an instant processing and write the results out in ASCII. Please
note well that this is done purely for educational purposes. Instant processing and writing the results out in
ASCII is time consuming and dramatically reduces the achievable troughput. Furthermore, the resulting files
are many times larger than the original binary data. Any meaningful application derived from these demos

Page 13

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

should therefore not write out individual data records but perform some sort of application specific data analy-
sis for preview and/or data reduction. Typical and meaningful examples are histogramming (see subfolders
t3rmode_instant_histogramming in C, Python, Delphi and C#) or intensity over time traces as shown
in the LabVIEW demo. Please note also that such real-time processing requires a suitable choice of pro-
gramming language. For instance, interpreted Python and Matlab scripts are many times slower than natively
compiled code. Ultimate performance is obtained only with a proper compiled language such as C or Pascal.
Furthermore, true efficiency (and maximum throughput) can in such a scenario only be achieved by making
use of parallel processing on multiple CPUs. This requires programming with multiple threads. In this case
you should design your program with at least two threads, one for collecting the data (i.e. working with
PH330_ReadFiFo) and another (or more) for processing, displaying, or storing the data (see also section
Fehler: Verweis nicht gefunden). This is not trivial and requires some programming experience.
If you need quick results and your throughput requirements are moderate you may still try and work with the
code from the demos in the subfolders tttrmode_instant_processing. For understanding the mecha-
nisms they are worth studying anyhow. Looking at the code you will see that after retrieving a block of TTTR
records via PH330_ReadFiFo there is a loop over that block with code to dissect each individual record. De-
pendent on what kind of record it is there will be different actions taken. A “special record” carries information
on time tag overflows and markers, while a regular event record carries photon timing data. While overflows
will typically not be of further interest (except correcting for them as shown) the pieces of interest are markers
and photons. When they occur you notice the calls into the subroutines GotMarker and GotPhoton (with vari -
ants for T2 and T3 mode). These are the points where you may want to accommodate you application spe-
cific code for whatever you may want to do with a photon or a marker. In your derived code you may soon
want to throw out the ASCII output for each an every record. It is only there for demonstration purposes.

5.3. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular PicoHarp 330 software (see
the manual). In order to obtain and use these warnings also in your custom software you may want to use the
library routine PH330_GetWarnings. This may help inexperienced users to notice possible mistakes before
starting a measurement or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that PH330_GetWarnings does not obtain the count rates on its own,
because the corresponding calls take some time and might waste USB bandwidth and processing time. It is
therefore necessary that the library routines for count rate retrieval (on all channels) have been called before
PH330_GetWarnings is called. Since most interactive measurement software periodically retrieves the
rates anyhow, this is not a serious complication. Note that there are library calls for retrieval of individual
count rates (PH330_GetSyncRate and PH330_GetCountRate) but in case of performance critical applica-
tions it is more efficient to use PH330_GetAllCountRates retrieving all rates in one call.

The routine PH330_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to
translate this into readable information you can use PH330_GetWarningsText. Before passing the bit field
into PH330_GetWarningsText you can mask out individual warnings by means of the bit masks defined in
mhdefin.h. See the appendix section 7.3 for a description of the individual warnings.

5.4. Hardware Triggered Measurements
This measurement scheme allows to start and stop the acquisition by means of external TTL signals rather
than software comands. Since it is an advanced real-time technique, beginners are advised to not try their
first steps with it. For the same reason, demos exist only in some programming languages (C, C#, Pascal,
Python).

Before using this scheme, consider when it is useful to do so. For instance, it may be tempting to use the
hardware triggering to implement very short histogramming durations. However, remember that TTTR mode
is usually the most efficient way of retrieving the maximum information on photon dynamics. By means of
marker inputs the photon events can be precisely assigned to complex external event scenarios.

The PicoHarp's data acquisition can be controlled in various ways. Default is the internal CTC (counter timer
circuit). In that case the measurement will take the duration set by the tacq parameter passed to
PH330_StartMeas. The other way of controlling the histogram boundaries (in time) is by external TTL sig-
nals fed to the control connector pins C1 and C2 (see appendix section Connectors of the MultiHarp manual).

Page 14

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

In that case it is possible to have the acquisition started and stopped when specific signals occur. It is also
possible to combine external starting with stopping through the internal CTC. The exact behaviour of this
scheme is controlled by the parameters supplied to the call of MH_SetMeasControl. Dependent on the pa-
rameter meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until CTC expires. The duration
is set by the tacq parameter passed to
PH330_StartMeas.

MEASCTRL_C1_GATE 1 Data is collected for the period where C1 is active.
This can be the logical high or low period dependent
on the value supplied to the parameter
startedge.

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to PH330_StartMeas.

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the parameters startedge and
stopedge.

MEASCTRL_SW_START_SW_STOP 6 Data collection is started and stopped by software
using PH330_StartMeas and PH330_StopMeas.
This permits overcoming the limit of 100 h imposed
by the hardware CTC. This is not a hardware
triggered measurement scheme but it needed to be
listed here for completeness.

The symbolic constants shown above are defined in ph330defin.h. There are also symbolic constants for
the parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to detect
the beginning and end of a measurement. Be aware that the speed of you computer and the delays intro -
duced by the operating system's task switching impose some limits on how fast you can run this scheme.

5.5. Working with Event Filtering
Filtering TTTR data streams in hardware helps to reduce USB bus load by eliminating photon events that
carry no information of interest as typically found in many coincidence correlation experiments. Please read
the PicoHarp 330 manual for more details.

The filter has several programmable parameters. The parameter timerange determines the time window
the filter is acting on. The parameter matchcnt specifies how many other events must fall into the chosen
time window for the filter condition to act on the event at hand. The parameter inverse inverts the filter ac-
tion, i.e. when the filter would regularly have eliminated an event it will then keep it and vice versa. For the
typical case, let it be not inverted. Then, if matchcnt is 1 we will obtain a simple ‘singles filter’. This is the
most straight forward and most useful filter in typical quantum optics experiments. It will suppress all events
that do not have at least one coincident event within the chosen time range, be this in the same or any other
channel.

Page 15

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

In addition to the filter parameters explained so far it is possible to mark individual channels for use. Used
channels will take part in the filtering process. Unused channels will be suppressed altogether. Furthermore, it
is possible to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as
‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, pro-
vided the filter is enabled. The parameters usechannels and passchannels are actually bitmasks where
channels to be used or passed are indicated by their corresponding bits set to one.

The filter can also be switched into a test mode where the data is not transferred to USB. Instead one will
then use PH330_GetFilterInputRates and PH330_GetFilterOutputRates in order to check its ef-
fect of data rate reduction. This helps to initially try out and optimize the filter parameters without running into
FIFO overrun issues.

5.6. Using Multiple Devices
The library is designed to work with multiple PicoHarp 330 devices (up to 8). For simplicity the demos use
only the first device found. If you wish to use more than one PicoHarp 330 at the same time you need to
modify the code accordingly. At the API level of PH330Lib the devices are distinguished by a device index
(0 .. 7). The device order corresponds to the order in which Linux enumerates the devices. If the devices
were plugged in or switched on sequentially when Linux was already up and running, the order is given by
that sequence. Otherwise it can be somewhat unpredictable. It may therefore be difficult to know which phys -
ical device corresponds to the given device index. In order to solve this problem, the library routine
PH330_OpenDevice provides a second argument through which you can retrieve the serial number of the
physical device at the given device index. Similarly you can use PH330_GetSerialNumber any time later
on a device you have successfully opened. The serial number of a physical PicoHarp 330 device can be
found at the back of the housing. It is an 8 digit number starting with 010. The leading zero will not be shown
in the serial number strings retrieved through PH330_OpenDevice or PH330_GetSerialNumber.

As outlined above, if you have more than one PicoHarp 330 and you want to use them together you need to
modify the demo code accordingly. This requires the following steps: Take a look at the demo code where the
loop for opening the device(s) is. In most of the demos all the available devices are opened. You may want to
extend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs such as the
regular PicoHarp 330 software.

By means of the device indices you picked out you can then extend the rest of the program so that every ac-
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap-
proach. It does no harm if you close a device that you haven't opened.

Note that combining multiple devices by software does not make a proper replacement for a hardware device
with more channels. This is due to multiple reasons. First, the clocks of the devices are not infinitely accurate
and may therefore drift apart. Second, the software-combined devices cannot start or stop measurements at
exactly the same time. Software timing is not accurate enough and will cause unpredictable delays of some
milliseconds. Third, the data of the devices arrives in separate data streams and cannot easily be merged to-
gether. Even though the first and second issue can partially be solved by means of external clock signals,
hardware controlled measurements and/or markers, the approach is somewhat cumbersome.

Page 16

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

6. Problems, Tips & Tricks

6.1. PC Performance Requirements
Performance requirements for the library are the same as with the standard PicoHarp 330 software for Win-
dows. The PicoHarp 330 device and its software interface are a complex real–time measurement system de-
manding appropriate performance both from the host PC and the operating system. This is why a reasonably
modern CPU and sufficient memory are required. At least a quad core, 2 GHz processor, 4 GB of memory
and a fast hard disk are recommended.

6.2. USB Interface
In order to deliver maximum throughput, the PicoHarp 330 uses USB 3.0*) bulk transfers. This is why the Pi-
coHarp 330 must rely on having a USB host interface providing USB 3.x speed. USB 3.x host controllers of
modern PCs are usually integrated on the mainboard. For older PCs they may be upgraded as plug-in cards.
Throughput is then usually limited by the host controller and operating system, not the PicoHarp 330. Do not
run other bandwidth demanding devices on the same USB interface when working with the PicoHarp 330.
USB cables must be qualified for USB 3.x speed. Old and cheap cables often do not meed this requirement
and can lead to errors and malfunction. Similarly, many PCs have poor internal USB cabling, so that USB
sockets at the front of the PC are often unreliable. Obscure USB errors may also result from worn out plugs
and sockets or subtle damages to USB cables, caused, e.g., by sharply bending or crushing them. Observe
the USB LED on the front panel: It should light up green to indicate a USB 3.0 connection. If it shows yellow
the device is connected only at USB 2.0 speed and will deliver very poor throughput. If the USB LED does
not light up at all there may be a driver issue, check the Windows device manager then.

6.3. Troubleshooting
Troubleshooting should begin by testing your hardware and driver setup. This is best accomplished by the
standard PicoHarp 330 software for Windows. Under Linux it can also be used with Wine. Only if this soft-
ware is working properly you should start working with the library. If there are problems even with the stand-
ard software, please consult the PicoHarp 330 manual for detailed troubleshooting advice.

Under Linux the PicoHarp 330 programming library will access the PicoHarp 330 device through Libusb. You
need to make sure Libusb has been installed correctly. Normally this is readily provided by all recent Linux
distributions. You can use lsusb to check if the device has been detected and is accessible. Please consult
the PicoHarp 330 manual for hardware related problem solutions. Note that an attempt at opening a device
that is currently used by another process will result in the error code ERROR_DEVICE_BUSY being returned
from PH330_OpenDevice. Opening the device may also fail due to insufficient access rights (permissions).
This may appear as if the device is not present at all. In this case look at the output of lsusb. The PicoHarp
should appear with its vendor ID 0D0E and the device ID 0013. If the device is actually listed there and you
still cannot open it then you probably have not set the right access permissions. See section 3.2 to fix this.

As a next step, try the readily compiled demos supplied with the library. For first tests take the standard histo -
gramming demos. If this is working, your own programs should work as well. Note that the hard coded set-
tings may not be compatible with your experimental setup. Then the pre–compiled demo may not work as ex-
pected.

6.4. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel-
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and DLL. In any case your software should issue a warning if it de-
tects versions other than those it was tested with. Note that the call of PH330_GetLibraryVersion re-
turns only the major two digits of the version (e.g. 2.0). The library actually has two further sub–version digits,

*) USB 3.0 was later renamed to USB 3.1 Gen 1 and is now called USB 3.2 Gen 1

Page 17

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

so that the complete version number has four digits (e.g. 2.0.0.0). These sub–digits help to identify intermedi-
ate versions that may have been released for minor updates or bug fixes. The complete version number in-
cluding the build date will be shown upon running the library installtion script. If you need to check it later you
can run the command:

strings /usr/local/lib64/ph330/libph330.so | grep "LIBPH330 VERSION"

The interface of releases with identical major version will remain the same. The minor version is typically in -
cremented when there are new features or functions added without breaking compatibilty in regard to the ori-
ginal interface of the corresponding major release. The very last digit is typically incremented upon bugfixes
without functional changes.

6.5. New Linux Versions
The library has good chances to remain compatible with upcoming Linux versions. This is because the inter -
face of libusb is likely to remain unchanged, even if libusb changes internally. You can even revert to an
earlier version if necessary. Of course we will also try to catch up with new developments that might break
compatibility, so that we will provide upgrades when necessary. However, note that this is work carried out
voluntarily and implies no warranties for future support.

6.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check for software updates before investing time into a larger programming
effort.

6.7. Bug Reports and Support
The PicoHarp 330 TCSPC system has gone through extensive testing. It builds on over 25 years of experi-
ence with several predecessor models and the feedback of hundreds of users. Nevertheless, it is a fairly new
product and some bugs may still be found. In any case we would like to offer you our support if you experi -
ence problems with the system. Do not hesitate to contact PicoQuant in case of difficulties with your Pico-
Harp.

If you observe errors or bugs caused by the PicoHarp 330 system please try to find a reproducible error situ-
ation. Then prepare a detailed description of the problem and all relevant circumstances, especially the ver-
sions of the software you were using, the version of Linux and the serial number of your PicoHarp 330 . Then
use our support page at www.picoquant.com/contact/support to create a ticket. Alternatively you can also
write an email to support@picoquant.com. Your qualified feedback will help us to improve the product and
documentation.

A very useful new feature of PH330Lib v. 2.0 is the API call PH330_SaveDebugDump. It is provided to help
debugging gateware issues by letting the user save a snapshot of the device’s internal FPGA states to a file
that then can be submitted for support. Please implement this feature in your custom code whenever feasible.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications.

At our website we also maintain a large bibliography of publications referring to our instruments. It may serve
as a reference for you and other potential users. See http://www.picoquant.com/scientific/references. Please
kindly submit your publications for addition to this list.

Page 18

http://www.picoquant.com/scientific/references
mailto:support@picoquant.com
http://www.picoquant.com/contact/support

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

7. Appendix

7.1. Data Types
The PicoHarp programming library is written in C and its data types correspond to C / C++ data types with
bit-widths as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note also that on platforms other than the x86-64 architecture byte swapping may occur when binary Pico-
Harp 330 data files are read there for further processing. We recommend using the native x86-64 architecture
environment consistently.

7.2. Functions Exported by PH330Lib.so
See ph330defin.h for predefined constants given in capital letters in the following subsections here.
Note that these indeed are constants fixed at compile time of the library and that you cannot change them,
even if in some of the demo programs it might look like it.

Return values < 0 denote errors. See errorcodes.h for the possible error codes.

Note that PH330Lib is a multi-device library with the capability to control more than one PicoHarp 330 simul-
taneously. For this reason all device specific functions (i.e. the functions from section 7.2.2 on) take a device
index as their first argument.

Note also that functions taking a channel number as an argument expect the channels enumerated 0..N-1
while the regular interactive PicoHarp 330 software enumerates the channels 1..N as shown on the physical
front panel. This is for the efficiency of internal data structures and for consistency with earlier products.

Page 19

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

7.2.1. General Functions
These functions work independent from any device.

int PH330_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Use this call to ensure compatibility of the library with your own application.

int PH330_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a PH330_xxx library call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

7.2.2. Device Related Functions
All functions here and further below are device related and require a device index.

int PH330_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Once a device is opened by your software it will not be available for use by other programs until you close it.

int PH330_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int PH330_Initialize (int devidx, int mode, int refsource);

arguments: devidx: device index 0..7
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode

refsource: reference clock to use
0 = use internal clock
1 = use 10 MHz external clock
2 = use 100 MHz external clock
3 = use 500 MHz external clock

Page 20

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the
measurement mode you select here. See the PicoHarp 330 manual for more information on the measurement modes.

7.2.3. Functions for Use on Initialized Devices
All functions below can only be used after PH330_Initialize was successfully called.

int PH330_GetHardwareInfo (int devidx, char* model, char* partno, char* version);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 24 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH330_GetFeatures (int devidx, int* features);

arguments: devidx: device index 0..7
features: pointer to a buffer for an integer (actually a bit pattern)

return value: =0 success
<0 error

Note: You do not really need this function. It is mainly for integration in PicoQuant system software such as SymPhoTime in order
to figure out in a standardized way what capabilities the device has. If you want it anyway, use the bit masks from mhdefin.h
to evaluate individual bits in the pattern.

int PH330_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int PH330_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the number of allowed binning steps

return value: =0 success
<0 error

Note: The base resolution of a device is its best possible resolution as determinded by the hardware. It also corresponds to the
timing resolution in T2 mode. In T3 and Histogramming mode it is possible to “bin down” the resolution (see PH330_Set-
Binning) The value returned in binsteps is the number of permitted binning steps. The range of values you can pass to
PH330_SetBinning is then 0..binsteps-1.

int PH330_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..7
nchannels: pointer to an integer,

returns the number of installed input channels

Page 21

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

return value: =0 success
<0 error

Note: The value returned in nchannels is the number of channels. The range of values you can pass to the library calls accept-
ing a channel number is then 0..nchannels-1.

int PH330_GetModuleInfo (int devidx, int* modelcode, int* versioncode);

arguments: devidx: device index 0..7
modelcode: pointer to an integer,

returns the model code of the module
versioncode: pointer to an integer,

returns the version code of the module

return value: =0 success
<0 error

Note: This routine is for retrieval of hardware version details. You only need this information for support enquiries.

int PH330_GetDebugInfo(int devidx, char *debuginfo);

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 65536 characters

return value: =0 success
<0 error

Note: Use this call to obtain debug information. You can call it immediately after receiving an error code <0 from any library call. It
is of particular value after detecting a FLAG_SYSERROR from PH330_GetFlags. In case of FLAG_SYSERROR please
provide this information for support.

int PH330_SaveDebugDump(int devidx, char* filepath); // new since v. 2.0

arguments: devidx: device index 0..7
filepath: pointer to a string holding the destination path including a

trailing path delimiter

return value: =0 success
<0 error

Note: Use this call to obtain and save hardware debug information. You can call it immediately after receiving an error code <0
from any library call. It is of particular value after detecting a FLAG_SYSERROR from PH330_GetFlags and in case of er-
rors in PH330_Initialize. Please provide the saved file(s) for support.

int PH330_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values < 81 MHz. It should only be used with sync sources
of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly larger tim-
ing jitter. The readings obtained with PH330_GetCountRate and PH330_GetAllCountRates are internally corrected for
the divider setting and deliver the external (undivided) rate. The sync divider should not be changed while a measurement is
running.

Page 22

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_SetSyncTrgMode (int devidx, int mode);

arguments: devidx: device index 0..7
mode: 0 = TRGMODE_ETR = set edge trigger mode

1 = TRGMODE_CFD = set constant fraction discriminator mode

return value: =0 success
<0 error

Note: This call selects the sync channel’s trigger mode. Edge trigger mode is useful for pulses with repeatable shape, CFD mode
is useful for pulses with fluctuating amplitude but has a longer dead time. After the trigger mode has been changed it must
be (re-)configured via PH330_SetSyncEdgeTrg or PH330_SetSyncCFD, respectively.

int PH330_SetSyncEdgeTrg(int devidx, int level, int edge);

arguments: devidx: device index 0..7
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: This call is meaningful and permitted only when the sync channel is in TRGMODE_ETR (see PH330_SetSyncTrgMode).

int PH330_SetSyncCFD(int devidx, int level, int zerocross);

arguments: devidx: device index 0..7
level: trigger level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

return value: =0 success
<0 error

Note: This call is meaningful and permitted only when the sync channel is in TRGMODE_CFD (see PH330_SetSyncTrgMode).

int PH330_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..7
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the sync input. Actual resolution is the device’s base resolution.

int PH330_SetSyncChannelEnable (int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the sync channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: This makes sense only in T2 mode. Histogramming and T3 mode need an active sync signal.

Page 23

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_SetSyncDeadTime (int devidx, int on, int deadtime);

arguments: devidx: device index 0..7
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. Note that an extended dead-
time does not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events
occuring within the extended dead-time from further processing. When an extended dead-time is set then it will also affect
the count rate meter readings. The actual extended dead-time is only approximated to the nearest step of the device’s base
resolution.

int PH330_SetInputTrgMode (int devidx, int channel, int mode);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
mode: 0 = TRGMODE_ETR = set edge trigger mode

1 = TRGMODE_CFD = set constant fraction discriminator mode

return value: =0 success
<0 error

Note: This call selects an input channel’s trigger mode. Edge trigger mode is useful for pulses with repeatable shape, CFD mode
is useful for pulses with fluctuating amplitude. After the trigger mode has been changed it must be configured via
PH330_SetInputEdgeTrg or PH330_SetInputCFD, respectively. The maximum input channel index must correspond to
nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputEdgeTrg(int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: This call is meaningful and permitted only in TRGMODE_ETR (see PH330_SetInputTrgMode). The maximum input chan-
nel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputCFD(int devidx, int channel, int level, int zerocross);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
level: trigger level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

return value: =0 success
<0 error

Note: This call is meaningful and permitted only in TRGMODE_ETR (see PH330_SetInputTrgMode). The maximum input chan-
nel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

Page 24

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the chosen input. Actual offset resolution is the device’s base resolution.
The maximum input channel index must correspond to nchannels-1 where nchannels must be obtained through
PH330_GetNumOfInputChannels.

int PH330_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
enable: desired enable state of the input channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNumOfIn-
putChannels.

int PH330_SetInputDeadTime (int devidx, int channel, int on, int deadtime);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. Note that an extended dead-
time does not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events
occuring within the extended dead-time from further processing. When an extended dead-time is set for a channel then it will
also affect the corresponding count rate meter readings. Also note that the actual extended dead-time is only approximated
to the nearest step of the device’s base resolution.

int PH330_SetInputHysteresis (int devidx, int hystcode);

arguments: devidx: device index 0..7
deadtime: code for the hysteresis

0 = 3mV approx. (default)
1 = 35mV approx.

return value: =0 success
<0 error

Note: This call is intended for the suppression of noise or pulse shape artefacts of some detectors by setting a higher input hyster -
esis for the input edge triggers. The setting acts on all input channels simultaneously but it is without effect when an input is
in CFD mode. It is only available if the present hardware supports it and will return PH330_ERROR_INVALID_OPTION other-
wise.

int PH330_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Page 25

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Note: This setting is meaningful only in Histogramming Mode. It determines if a measurement run will stop when any channel
reaches the maximum set by stopcount. If stop_ofl is 0 the measurement will continue but counts above STOPCNTMAX
in any bin will be clipped.

int PH330_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..7
binning: measurement binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = (MAXBINSTEPS-1) (largest)

return value: =0 success
<0 error

Note: Binning only applies in Histogramming and T3 Mode. The binning code corresponds to repeated doubling, i.e.

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on.

int PH330_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: histogram time offset in ns

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: This offset only applies in histogramming and T3 mode. It affects only the difference between stop and start before it is put
into the T3 record or is used to increment the corresponding histogram bin. It is intended for situations where the range of
the histogram is not long enough to look at “late” data. By means of the offset the “window of view” is shifted to a later range.
This is not the same as changing or compensating cable delays. If the latter is desired please use PH330_SetSyncChan-
nelOffset and/or PH330_SetInputChannelOffset.

int PH330_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..7
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE

actuallen: pointer to an integer,
returns the resulting length (bin count) of the histograms
calculated as 1024*(2^lencode)

return value: =0 success
<0 error

Note: This call is only meaningful in histogramming mode. It sets the number of bins of the collected histograms. The histogram
length obtained with MAXLENCODE is MAXHISTLEN while DFLTLENCODE results in DFLTHISTLEN (65536), which is the
default after initialization if PH330_SetHistoLen is not called.

int PH330_ClearHistMem (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This clears the histogram memory of all channels. Only meaningful in histogramming mode.

Page 26

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..7
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP
6 = MEASCTRL_SW_START_SW_STOP

startedge: edge selection code
0 = falling
1 = rising

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

Note: This sets the measurement control mode and must be called before starting a measurement. The default after initialization
(if this function is not called) is 0, i.e. CTC controlled acquisition time. The modes 1..3 allow hardware triggered measure-
ments through TTL signals at the control port. Note that this needs custom software. For a guideline please see the ad-
vanced demos histomode_extcontrol. The mode MEASCTRL_SW_START_SW_STOP permits controlling the duration of
measurements purely by software and thereby overcoming the limit of 100h imposed by the hardware CTC. Note that in this
case the results of PH330_GetElapsedMeasTime will be less accurate.

int PH330_SetTriggerOutput(int devidx, int period);

arguments: devidx: device index 0..7
period: in units of 100ns, TRIGOUTMIN..TRIGOUTMAX, 0 = off

return value: =0 success
<0 error

Note: This can be used to set the period of the programmable trigger output. The period 0 switches it off. Observe laser safety
when using this feature for triggering a laser.

int PH330_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

Note: If beforehand MEASCTRL_SW_START_SW_STOP is set via PH330_SetMeasControl, the parameter tacq will be ignored
and the measurement will run until PH330_StopMeas is called. This can be used to overcome the limit of 100 h imposed by
the hardware CTC. However, the results of PH330_GetElapsedMeasTime will in this case be less accurate as it can only
use the timers of the operating system.

int PH330_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This call can be used to force a stop before the acquisition time expires. For clean-up purposes it must in any case be called
after a measurement, also if the measurement has expired on its own.

Page 27

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..7
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition time still running
1 = acquisition time has ended

return value: =0 success
<0 error

Note: This call can be used to check if a measurement has expired or is still running.

int PH330_GetHistogram (int devidx, unsigned int *chcount, int channel);

arguments: devidx: device index 0..7
chcount pointer to an array of at least actuallen dwords (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1

return value: =0 success
<0 error

Note: The histogram buffer size must correspond to the value actuallen obtained through PH330_SetHistoLen.
The maximum input channel index must correspond to nchannels-1 with nchannels obtained through PH330_GetNu-
mOfInputChannels.

int PH330_GetAllHistograms(int devidx, unsigned int *chcount);

arguments: devidx: device index 0..7
chcount: buffer for a multidimensional array of the form

 unsigned int histograms[nchannels][actuallen]

return value: =0 success
<0 error

Note: This can be used as a replacement for multiple calls to PH330_GetHistogram when all histograms are to be retrieved in
the most time-efficient way. The multidimensional array receiving the data must be dimensioned according to the number of
input channels of the device and the chosen histogram length. The corresponding value actuallen can be obtained
through PH330_SetHistoLen and nchannels can be obtained through PH330_GetNumOfInputChannels.

int PH330_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps

return value: =0 success
<0 error

Note: This is not meaningful in T2 mode.

int PH330_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..7
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

Note: Allow at least 100 ms after PH330_Initialize or PH330_SetSyncDivider or any of the input configuration calls in or-
der to get a stable rate meter reading. Similarly, wait at least 100 ms to get a new reading. This is the gate time of the
counter.

Page 28

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..7
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after PH330_Initialize to get a stable rate meter reading. Similarly, wait at least 100 ms to get a
new reading. This is the gate time of the counters. The maximum input channel index must correspond to nchannels-1
with nchannels obtained through PH330_GetNumOfInputChannels.

int PH330_GetAllCountRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[nchannels] receiving the input rates

return value: =0 success
<0 error

Note: This can be used as replacement of PH330_GetSyncRate and PH330_GetCountRate when all rates need to be retrieved
in an efficient manner. Make sure that the array cntrates is large enough for the number of input channels your device
has. The safest approach is to dimension it for MAXINPCHAN.

int PH330_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..7
flags: pointer to an integer

returns current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in ph330defin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise
AND.

int PH330_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..7
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: This can be used to obtain the elapsed measurement time of a measurement. This relates to the current measurement when
still running or to the previous measurement when already finished. Note that when MEASCTRL_SW_START_SW_STOP is
used (controlling the duration of meaurements purely by software) the results of PH330_GetElapsedMeasTime will be less
accurate.

int PH330_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..7
warnings pointer to an integer

returns warnings, bitwise encoded (see ph330defin.h)

return value: =0 success
<0 error

Note: Prior to this call you must call either PH330_GetAllCountRates or call PH330_GetSyncRate and PH330_GetCout-
Rate for all channels. Otherwise the received warnings will at least partially be incorrect or incomplete.

Page 29

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters

warnings: integer bitfield obtained from PH330_GetWarnings

return value: =0 success
<0 error

Note: This can be used to translate warnings obtained by PH330_GetWarnings to a human-readable text.

int PH330_GetSyncPeriod (int devidx, double* period);

arguments: devidx: device index 0..7
period: pointer to a double precision float (64 bit)

returning the sync period in seconds

return value: =0 success
<0 error

Note: This call only gives meaningful results while a measurement is running and after two sync periods have elapsed.
The return value is undefined in all other cases. Resolution (unit) is that of the device’s base resolution. Accuracy is determ-
ined by single shot jitter and clock stability.

7.2.4. Special Functions for TTTR Mode

int PH330_ReadFiFo (int devidx, unsigned int* buffer, int* nactual);

arguments: devidx: device index 0..7
buffer: pointer to an array of TTREADMAX dwords (32bit)

where the retrieved TTTR data will be stored
nactual: pointer to an integer

returns the number of TTTR records received

return value: =0 success
<0 error

Note: The call will return typically after 10 ms and possibly less if no more data could be fetched. The latency behavior at input
rates close to zero is controlled by PH330_SetOflCompression. The actual time to return can also vary due to USB over-
head and unpredictable Windows latencies, especially when the PC or the USB connection is slow. The buffer must not be
accessed until the call returns.

int PH330_SetMarkerEdges (int devidx, int en1, int en2, int en3, int en4);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: This can be used to change the active edge on which the external TTL signals connected to the marker inputs are triggering.
Only meaningful in TTTR mode.

int PH330_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..7
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Page 30

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Note: This can be used to enable or disable the external TTL marker inputs. Only meaningful in TTTR mode.

int PH330_SetMarkerHoldoffTime (int devidx, int holdofftime);

arguments: devidx: device index 0..7
holdofftime: hold-off time in ns (0..HOLDOFFMAX)

return value: =0 success
<0 error

Note: This setting is not normally required but it can be used to deal with glitches on the marker lines. Markers following a previous
marker within the hold-off time will be suppressed. Note that the actual hold-off time is only approximated to about ±20 ns.

int PH330_SetOflCompression (int devidx, int holdtime);

arguments: devidx: device index 0..7
holdtime: hold time in ms (0..HOLDTIMEMAX)

return value: =0 success
<0 error

Note: This setting is not normally required but it can be useful when data rates are very low and there are more overflows than
photons. The hardware will then count overflows and only transfer them to the FiFo when holdtime has elapsed. The default
value is 2 ms. A value of zero means no compression. If you are implementing a real-time preview and data rates are very
low you may observe “stutter” when holdtime is chosen too large because then there is nothing coming out of the FiFo for
longer times. Whenever there is a true event record arriving (photons or markers) the previously accumulated overflows will
instantly be transferred. This may be the case merely due to dark counts, so the “stutter” would rarely occur. In any case you
can switch overflow compression off by setting holdtime 0. Have a look on the file demos to see how overflow records are
to be decoded. When compression is off the number of overflows in such a record is always 1. Otherwise it may grow to lar -
ger numbers.

7.2.5. Special Functions for TTTR Mode with Event Filtering
The library supports event filtering in hardware (see section Fehler: Verweis nicht gefunden). This helps to re-
duce USB bus load in TTTR mode by eliminating photon events that carry no information of interest as typic-
ally found in many coincidence correlation experiments. Please read the PicoHarp 330 manual for details.

int PH330_SetEventFilterParams(int devidx, int timerange, int matchcnt, int inverse);

arguments: devidx: device index 0..7
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

return value: =0 success
<0 error

Note: This sets the parameters for the Event Filter implemented in the FPGA hardware. The value timerange determines the
time window the filter is acting on. The parameter matchcnt specifies how many other events must fall into the chosen time
window for the filter condition to act on the event at hand. The parameter inverse inverts the filter action, i.e. when the filter
would regularly have eliminated an event it will then keep it and vice versa. For the typical case, let it be not inverted. Then,
if matchcnt is 1 we obtain a simple ‘singles filter’. This is the most straight forward and most useful filter in typical quantum
optics experiments. It will suppress all events that do not have at least one coincident event within the chosen time range,
be this in the same or any other channel. In order to mark individual channel as ‘use’ and/or ‘pass’ please use
PH330_SetEventFilterChannels.The parameter settings are irrelevant as long as the filter is not enabled.

Page 31

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

int PH330_SetEventFilterChannels(int devidx, int usechannels, int passchannels);

arguments: devidx: device index 0..7
usechannels: integer bitfield with bit0 = leftmost input channel,..

bit7 = rightmost input channel,
bit8 = sync channel,
bit9 and higher must be 0

bit value 1 = use this channel,
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel,..
bit7 = rightmost input channel,
bit8 = sync channel
bit9 and higher must be 0

bit value 1 = unconditionally pass this channel,
bit value 0 = pass this channel subject to filter condition

return value: =0 success
<0 error

Note: This selects the filter channels. The bitfield usechannels is used to indicate if a channel is to be used by the filter. The bit-
field passchannels is used to indicate if a channel is to be passed through the filter unconditionally, whether it is marked
as ‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, provided the filter
is enabled. The settings for the sync channel are meaningful only in T2 mode and will be ignored in T3 mode. The channel
settings are irrelevant as long as the filter is not enabled. .

int PH330_EnableEventFilter(int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the filter

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events may be
filtered out according to the parameters set with PH330_SetEventFilterParams and PH330_SetEventFilterChan-
nels.

int PH330_SetFilterTestMode(int devidx, int testmode);

arguments: devidx: device index 0..7
testmode: desired mode of the filter

0 = regular operation
1 = testmode

return value: =0 success
<0 error

Note: One important purpose of the event filters is to reduce USB load. When the input data rates are higher than the USB band-
with, there will at some point be a FiFo overrun. It may under such conditions be difficult to empirically optimize the filter set-
tings. Setting filter test mode disables all data transfers into the FiFo so that a test measurement can be run without interrup-
tion by a FiFo overrun. The library routines PH330_GetFilterInputRates and PH330_GeFilterOutputRates can
then be used to monitor the count rates before and after the filter. When the filtering effect is satisfactory the test mode can
be switched off again to perform the regular measurement.

int PH330_GetFilterInputRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Page 32

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

Note: This call retrieves the count rates before entering the filter. A measurement must be running to obtain valid results. Allow at
least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the array cntrates is large
enough for the number of input channels your device has. The safest approach is to dimension it for MAXINPCHAN.

int PH330_GetFilterOutputRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates after the filter before entering the FiFo. A measurement must be running to obtain valid
results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the array cn-
trates is large enough for the number of input channels your device has. The safest approach is to dimension it for MAX-
INPCHAN.

Page 33

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

7.3. Warnings
The following is related to the warnings (possibly) generated by the library routine PH330_GetWarnings.
The mechanism and warning criteria are the same as those used in the regular PicoHarp 330 software and
depend on the current count rates and the current measurement settings.

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that PH330_GetSyncrate and
PH330_GetCoutrate have been called (the latter for all channels) before PH330_GetWarnings is called.
For speed you can use PH330_GetAllCoutrates instead.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur in
all measurement modes. Also, count rate limits for a specific warning may be different in different modes. The
following table lists the possible warnings in the three measurement modes and gives some explanation as to
their possible cause and consequences.

Warning Histo Mode T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No counts are detected at the sync input. In histogramming
and T3 mode this is crucial and the measurement will not
work without this signal.

√ √

WARNING_SYNC_RATE_VERY_LOW

The detected pulse rate at the sync input is below 100 Hz and
cannot be determined accurately. Other warnings may not be
reliable under this condition.

√ √

WARNING_SYNC_RATE_TOO_HIGH

The pulse rate at the sync input (after the divider) is higher
than 81 MHz. This is close to the TDC limit. Sync events will
be lost above 82 MHz. T2 mode is normally intended to be
used without a fast sync signal and without a divider. If you
see this warning in T2 mode you may accidentally have con-
nected a fast laser sync.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadic-
ally see this warning if your detector has a very low dark
count rate and is blocked by a shutter. In that case you may
want to ignore or disable this warning.

√ √ √

WARNING_INPT_RATE_TOO_HIGH

The overall pulse rate at the input channels is higher than 80
MHz (USB 3.0 connection) or higher than 9 MHz (USB 2.0
connection). This is close to the throughput limit of the present
USB connection. The measurement will likely lead to a FIFO
overrun. There are some rare measurement scenarios where
this condition is expected and the warning can be ignored or
disabled. Examples are measurements where the FIFO can
absorb all data of interest before it overflows.

√ √ √

Page 34

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at any input channel is higher than 5% of the sync
rate. This is the classical pile-up criterion. It will lead to notice-
able dead-time artefacts. There are rare measurement scen-
arios where this condition is expected and the warning can be
ignored or disabled. Examples are antibunching measure-
ments or rapidFLIM where pile-up is either tolerated or correc-
ted for during data analysis. One can usually also ignore this
warning when the current time bin width is larger than the
dead-time.

√ √

WARNING_DIVIDER_GREATER_ONE

In T2 mode:

The sync divider is set larger than 1. This is probably not in-
tended. The sync divider is designed primarily for high sync
rates from lasers and requires a fixed pulse rate at the sync
input. In that case you should use T3 mode. If the signal at
the sync input is from a photon detector (coincidence correla-
tion etc.) a divider > 1 will lead to unexpected results. There
are rare measurement scenarios where this condition is inten-
tional and the warning can be ignored or disabled.

In histogramming and T3 mode:

If the pulse rate at the sync input is below 81 MHz then a
sync divider > 1 is not needed. The measurement may yield
unnecessary jitter if the sync source is not very stable.

√ √ √

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/SyncRate) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:

 Span = Resolution * Length

Length is 32768 in T3 mode. In histogramming mode it
depends on the chosen histogram length (default is 65536).
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional
and the warning can be ignored or disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/SyncRate)
can be covered by the measurement time span (see
calculation above) without using an offset. The offset may
lead to events getting discarded. There are some
measurement scenarios where this condition is intentional
and the warning can be ignored or disabled.

√ √

WARNING_COUNTS_DROPPED

This warning is issued when the front end of the data
processing pipeline was not able to process all events that
came in. This will occur typically only at very high count rates
during intense bursts of events.

√ √ √

Page 35

PicoQuant GmbH PicoHarp 330 Programming Library for Linux - v.2.0.0.0

WARNING_USB20_SPEED_ONLY

The PicoHarp 330 is designed for USB 3.0 superspeed
(5Gbits/s). This warning is issued when the device is
connected only at the speed of USB 2.0 (480Mbits/s). This
works but will result in severely limited throughput. Check
USB ports and cables in use. The same issue is indicated by
the USB status LED showing yellow instead of green.

√ √ √

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with an oscillo-
scope of sufficient bandwidth.

Page 36

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
http://www.picoquant.com

	1. Introduction
	2. General Notes
	2.1. Scope and Compatibility
	2.2. What’s new in this Version
	2.3. Warranty and Legal Terms
	Disclaimer
	License and Copyright Notice
	Acknowledgements

	3. Installation of the Library
	3.1. Requirements
	3.2. Device Access Permissions
	3.3. Installing the Library
	3.4. Installing the Demo Programs

	4. The Demo Applications
	4.1. Functional Overview
	Histogramming Mode Demos
	TTTR Mode Demos
	Advanced Demos

	4.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Pascal/ Lazarus Demos
	The Python Demos
	The LabVIEW Demos
	The MATLAB Demos
	The Rust Demo

	5. Advanced Techniques
	5.1. Efficient Data Transfer
	5.2. Instant TTTR Data Processing
	5.3. Working with Warnings
	5.4. Hardware Triggered Measurements
	5.5. Working with Event Filtering
	5.6. Using Multiple Devices

	6. Problems, Tips & Tricks
	6.1. PC Performance Requirements
	6.2. USB Interface
	6.3. Troubleshooting
	6.4. Version tracking
	6.5. New Linux Versions
	6.6. Software Updates
	6.7. Bug Reports and Support

	7. Appendix
	7.1. Data Types
	7.2. Functions Exported by PH330Lib.so
	7.2.1. General Functions
	7.2.2. Device Related Functions
	7.2.3. Functions for Use on Initialized Devices
	7.2.4. Special Functions for TTTR Mode
	7.2.5. Special Functions for TTTR Mode with Event Filtering

	7.3. Warnings

