
HydraHarp 500

High Resolution
Multichannel TCSPC Systems and
Time Taggers with USB Interface

User's Manual

Version 1.0.0.0

HH500Lib – Programming Library
for Custom Software Development

under Linux

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Table of Contents

1. Introduction.. 4

2. General Notes.. 5

2.1. What’s new in this Version...5

2.2. Warranty and Legal Terms...5

3. Installation of the Library.. 7

3.1. Requirements... 7

3.2. Device Access Permissions...7

3.3. Installing the Library... 7

3.4. Installing the Demo Programs..8

4. The Demo Applications.. 9

4.1. Functional Overview... 9

4.2. The Demo Applications by Programming Language...10

5. Advanced Techniques.. 14

5.1. Using Multiple Devices... 14

5.2. Efficient Data Transfer.. 14

5.3. Instant TTTR Data Processing...15

5.4. Working with Warnings... 16

5.5. Hardware Triggered Measurements...16

5.6. Working in Continuous Mode...17

5.7. Working with the External FPGA Interface...18

5.8. Working with Event Filtering...18

5.9. Synchronizing Devices with White Rabbit..19

6. Problems, Tips & Tricks.. 22

6.1. PC Performance Requirements...22

6.2. USB Interface... 22

6.3. Troubleshooting... 22

6.4. Version tracking... 22

6.5. New Linux Versions.. 23

6.6. Software Updates... 23

6.7. Bug Reports and Support... 23

7. Appendix.. 24

7.1. Data Types... 24

7.2. Functions Exported by HH500Lib.so..24

7.2.1. General Functions.. 25

7.2.2. Device Related Functions..25

7.2.3. Functions for Use on Initialized Devices...26

7.2.4. Special Functions for Continuous Histogramming Mode..37

7.2.5. Special Functions for TTTR Mode (Time Tagging)...38

Page 2

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7.2.6. Special Functions for TTTR Mode with Event Filtering...39

7.2.7. Special Functions for White Rabbit..42

7.2.8. Special Functions for the External FPGA Interface..44

7.3. Warnings.. 46

Page 3

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

1. Introduction
The HydraHarp 500 is a cutting edge Time-Correlated Single Photon Counting (TCSPC) system with USB 3.0
interface. Its integrated design provides a flexible number of high performance input channels at reasonable
cost and enables innovative measurement approaches. The timing circuits of each channel allow high meas-
urement rates up to 85 million counts per second (Mcps) with an excellent time resolution and a dead-time of
only 680 ps. The USB interface provides very high throughput as well as ‘plug and play’ installation. The input
triggers are adjustable for a wide range of input signals providing programmable edge+level triggers for both
negative and positive going signals and model dependent also Constant Fraction Discriminators (CFD) for
negative going signals. These specifications qualify the HydraHarp 500 for use with all single photon detect-
ors, notably Single Photon Avalanche Diodes (SPADs), Photomultiplier Tubes (PMT), and superconducting
nanowire detectors (via preamplifier).

The HydraHarp 500 can be purchased in different versions with currently up to 17 timing inputs of which one
issuitable as a synchronization (sync) input for very high frequencies. The use of the inputs is very flexible. In
fluorescence lifetime applications the sync channel is typically used as a timing reference input from a laser.
The other inputs are then used for photon detectors. In coincidence correlation applications all inputs includ-
ing the sync input can be used for photon detectors.

The HydraHarp 500 can operate in various modes to adapt to different measurement needs. The standard
histogram mode performs real–time histogramming in device memory. Two different Time–Tagged–Time–Re-
solved (TTTR) modes allow recording each photon event on separate, independent channels, thereby provid-
ing unlimited flexibility in off–line data analysis such as burst detection and time–gated or lifetime weighted
Fluorescence Correlation Spectroscopy (FCS) as well as picosecond coincidence correlation, using the indi-
vidual photon arrival times. The HydraHarp 500 is furthermore supported by a variety of accessories such as
pre–amplifiers, signal adaptors and detector assemblies from PicoQuant. A significant novel feature of the
HydraHarp 500 is support for White Rabbit, allowing time transfer and synchronization with sub-s accuracy
over long distances (see https://en.wikipedia.org/wiki/The_White_Rabbit_Project).

For more information on the HydraHarp 500 hardware and software please consult the HydraHarp 500
manual. For details on the method of Time–Correlated Single Photon Counting, please refer to our TechNote
on TCSPC.

The HydraHarp 500 standard software provides functions such as the setting of measurement parameters,
display of results, loading and saving of measurement parameters and histogram curves. Important measure-
ment characteristics such as count rate, count maximum and position, histogram width (FWHM) are dis-
played continuously. While these features will meet many of the routine requirements, advanced users may
want to include the HydraHarp’s functionality in their own automated measurement systems with their own
software. In particular where the measurement must be interlinked or synchronized with other processes or
instruments this approach may be of interest. For this purpose a programming library is provided as a Dy-
namic Link Library (DLL) for Windows (see separate manual) and as a shared library for Linux described
here.

The library supports custom programming in all major programming languages, notably C / C++, C#, Pascal,
Python, Rust, LabVIEW and MATLAB. This manual describes the installation and use of the HydraHarp 500
programming library and explains the associated demo programs. Please read both this library manual and
the HydraHarp 500 manual before beginning your own software development with the library. The HydraHarp
500 is a sophisticated real–time measurement system. In order to work with the system using the library,
sound knowledge in your chosen programming language is required.

Page 4

https://en.wikipedia.org/wiki/The_White_Rabbit_Project

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

2. General Notes
The HydraHarp 500 programming library HH500Lib for Linux is suitable for the “x86-64” processor architec-
ture only. There is no support for 32-bit systems due to the fact that hardly any Linux distribution still offers it.

The library has been tested with gcc 11.4.0 and 13.2.0, Mono 6.8.0 and 6.12.0, Rustc 1.88.0 (+cargo 1.88.0),
Python 3.11.3 and 3.12.3, as well as with Lazarus 2.0.12. and 2.2.0 (FreePascal 3.2.0 and 3.2.2). The demos
for LabVIEW and MATLAB have only been tested under Windows using LabVIEW 2020 and MATLAB
R2024b, due to our lack of the Linux versions. If you happen to test with Linux versions of LabVIEW or MAT-
LAB please let us know the results.

This manual assumes that you have read the HydraHarp 500 manual. References to it will be made where
necessary. It is also assumed that you have solid experience with the chosen programming language. Our
support will not teach programming fundamentals.

Note that despite of our efforts to keep changes minimal, data structures, program flow and function calls
may change in future versions without advance notice. Users must maintain appropriate version checking in
order to avoid incompatibilities. There is a function call that you can use to retrieve the version number (see
section 7.2). Note that this call returns only the major two digits of the version (e.g. presently 4.0). The library
actually has two further sub–version digits, so that the complete version number has four digits (e.g. presently
4.0.0.0). These sub–digits help to identify intermediate versions that may have been released for minor up-
dates or bug fixes. The interface of releases with identical major version will remain the same. The minor ver-
sion is typically incremented when there are new features or functions added without breaking compatibilty in
regard to the original interface of the corresponding major release. The rightmost digit of the complete version
number usually increments to indicate bugfix releases of otherwise identical interface and functionality.

2.1. What’s new in this Version
The HydraHarp 500 is a brand new product and the HydraHarp 500 programming library HH500Lib for Linux
version 1.0 is the first release. Please note that by name and specifications the HydraHarp 500 is a modern
successor of the seminal HydraHarp 400, however, they do not share the same software. Make sure you
download and use only the latest suitable software for the particular hardware model you have.

2.2. Warranty and Legal Terms

Disclaimer

PicoQuant GmbH disclaims all warranties with regard to the supplied software and documentation including
all implied warranties of merchantability and fitness for a particular purpose. In no case shall Pi-
coQuant GmbH be liable for any direct, indirect or consequential damages or any material or immaterial dam-
ages whatsoever resulting from loss of data, time or profits; arising from use, inability to use, or performance
of this software and associated documentation.

License and Copyright Notice

With the HydraHarp 500 hardware product you have purchased a license to use the HydraHarp 500 software.
You have not purchased any other rights to the software itself. The software is protected by copyright and in-
tellectual property laws. You may not distribute the software to third parties or reverse engineer, decompile or
disassemble the software or part thereof. You may use and modify demo code to create your own software.
Original or modified demo code may be re–distributed, provided that the original disclaimer and copyright
notes are not removed from it. Copyright of this manual and the online documentation belongs to Pi-
coQuant GmbH. No parts of it may be reproduced, translated or transferred to third parties without written
permission of PicoQuant GmbH.

Products and corporate names appearing in this manual may or may not be registered trademarks or subject
to copyrights of their respective owners. PicoQuant GmbH claims no rights to any such trademarks. They are
used here only for identification or explanation and to the owner’s benefit, without intent to infringe.

Page 5

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Acknowledgements

The HydraHarp 500 hardware in its current version as of August 2025 uses the White Rabbit PTP core v. 4.0
licensed under the CERN Open Hardware License v1.1 and its embedded WRPC software licensed under
GPL Version 2, June 1991. For Details please see https://ohwr.org/projects/white-rabbit/ and the links to li-
cense terms and related documents there. The WRPC software used in the HydraHarp 500 was minimally
modified and in order to meet the licensing terms the modified WRPC source code is provided as part of the
HydraHarp 500 software distribution download.

The HydraHarp 500 programming library for Linux uses Libusb to access the HydraHarp 500 USB devices.
Libusb is licensed under the LGPL which allows a fairly free use even in commercial projects. For details and
precise terms please see http://libusb.info. In order to meet the license requirements a copy of the LGPL as
appliccable to Libusb is provided as part of the distribution archive. The LGPL does not apply to the Hydra-
Harp 500 programming library as a whole.

For this version of the library we also gratefully acknowledge the use of GNU/Linux as a development plat-
form, as well as using the Tux logo (thanks to Larry Ewing, lewing@isc.tamu.edu and The GIMP) on the title
page of this manual.

Page 6

https://ohwr.org/projects/white-rabbit/

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

3. Installation of the Library

3.1. Requirements
Supported hardware is at this time solely the “x86-64” CPU platform as found in the majority of recent PCs.
Support for 32-bit platforms is not available, for the simple reason that all major Linux distributions are no
longer providing it. Required is a PC with 3.0*), at least two CPU cores, 2 GHz CPU clock and 4 GB of
memory. For optimal TTTR mode throughput to disk a fast solid state disk is recommended.

The library is designed to run on Linux kernel versions 5.0 or higher. It has been tested with the following dis -
tributions:

Ubuntu 22.04.3 LTS (kernel 5.15.0)
Ubuntu 24.04.3 LTS (kernel 6.8.0)
Linux Mint 22 (kernel 6.8.0)

Using the library requires libusb (https://libusb.info/). The formally required version is 1.0 or higher, tested ver-
sions were 1.0.25 and 1.0.27. Libusb is typically installed by default on all major Linux distributions.

It is recommended to start your work by using the standard interactive HydraHarp 500 data acquisition soft-
ware under Windows or Linux with Wine. This will give you a better understanding of the instrument’s opera-
tion before attempting your own programming efforts. It also ensures that your optical/electrical setup is work-
ing.

3.2. Device Access Permissions
For device access through libusb suitable permissions for the device must be granted to the normal user,
otherwise only the super-user root will have access. Recent Linux distributions use udev to handle this. For
automated setting of the device access permissions with udev you can add an entry to the set of rules files
that are contained in /etc/udev/rules.d. Udev processes these files in alphabetical order. The default
rule files usually carry names starting with a number. Don't change these files as they could be overwritten
when you upgrade your system. Instead, put your custom rule for the HydraHarp 500 in a separate file. The
typical content of this file should be:

ATTR{idVendor}=="0d0e", ATTR{idProduct}=="0016", MODE="666"

A suitable rules file HydraHarp500.rules is provided in the folder library under the unpacked HH500Lib
distribution folder. The install script (see section 3.3) will copy it to the /etc/udev/rules.d folder. After
installation you will need to disconnect and reconnect the device to get access.

If you have issues obtaining permissions recall that the name of the rules file is important. Each time a device
is detected by the udev system, the files are read in alphabetical order until a match is found. Different Linux
distributions may use different rule file names for various categories. If there happen to be later rules that are
more general (applying to a whole class of devices) they may override your custom rule and the desired
access rights. It is therefore important that you use a rules file named such that it gets evaluated after the
general case. The default naming HydraHarp500.rules most likely ensures this but if you see access
problems you may want to check.

Note that the setting MODE="666" is quite permissive for all users. If you prefer tighter security regarding
device access please study the documentation of udev and/or the recommendations of your distribution for
handling USB device access, e.g. employing user classes with suitable access rights.

3.3. Installing the Library
The library package is distributed as a zip archive. The shared library as such is provided as a binary file. It
supports all HydraHarp 500 models. It resides by default under /opt/picoquant/hh500lib/. This is not

*) USB 3.0 was later renamed to USB 3.1 Gen 1 and is now called USB 3.2 Gen 1

Page 7

https://libusb.info/

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

a strict requirement but it is where the demo programs will look for the library files and therefore it is
recommended to use this location.

The shell script install in the library distribution directory does the default directory creation and
installation in one step. You run it at the command prompt from within the library directory. Note that this
requires root permissions. As a normal user you must run it preceded with sudo like so:

sudo ./install

The install script will copy the library files (but not the demos) to opt/picoquant/hh500lib/ . It will also
add the installation path to picoquant-hh500lib.conf under /etc/ld.so.conf and subsequently run
ldconfig. This ensures that libhh500lib.so can be found by executables at runtime from anywhere.
Note, however, that at compile time of such an executable the linker must still be given the library path. The
demo projects are readily set up to look in opt/picoquant/hh500lib/ . The install script also installs a
udev rule file for device access permissions (see section 3.2). After installation (and still in the library
folder) you may want to run ./chkinst to verify the library is installed properly. The same script is also
useful to check if there was a previous version installed in opt/picoquant/hh500lib/ and see which it
was.

If chkinst shows the expected library version and no error is reported then the library is ready to use and
can be tested with the demos provided (see sections 3.4 and 4). You may also want to inspect the various
files in opt/picoquant/hh500lib/ to read the license terms, check definitions of constants, function
signatures, etc.

Note for SELinux: If upon linking with libhh500lib.so you get an error “cannot restore segment prot after
reloc” you probably need to adjust the security settings for libhh500lib.so. As root you need to run

chcon -t texrel_shlib_t opt/picoquant/hh500lib/libhh500lib.so

3.4. Installing the Demo Programs
The demos can be installed by simply copying the entire directory demos from the downloaded archive to a
disk location of your choice. This need not be under the root account but you need to ensure proper file ac-
cess permissions. Some of the demos will write output files in real time. In this case it matters how fast the
disk is, network locations may then become a bottleneck.

Page 8

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

4. The Demo Applications

4.1. Functional Overview
Please note that all demo code provided is correct to the best of our knowledge. However, we must disclaim
all warranties as to fitness for a particular purpose of this code. It is provided ‘as is’ for no more than explanat-
ory purposes and a starting point for your own work.

The demos are kept as simple as possible to maintain focus on the key issues of accessing the library. This is
why most of the demos have a minimalistic user interface and / or must be run from the command line. For
the same reason, the measurement parameters are mostly hard–coded and thereby fixed at compile time. It
is therefore necessary to change the source code and re–compile the demos in order to run them in a way
that is matched to your individual measurement setup. Running them unmodified will probably result in use-
less data (or none at all) because of inappropriate sync divider, resolution, input level settings, etc. In order to
understand these settings it is strongly recommended that you read the HydraHarp 500 manual and try them
out using the regular HydraHarp 500 software for Windows.

For the reason of simplicity, most of the demos will always only use the first HydraHarp 500 device they find,
although the library can support multiple devices. In selected programming languages (C, C#) there is an ad-
vanced demo showing how to use multiple devices in TTTR mode. If you wish to use some other demo with
more than one HydraHarp 500 you need to modify the code accordingly. See section 5.1 on this topic.

For some rather specialized applications the demos are provided only in C, for instance a demo showing how
to use White Rabbit (see section 5.9). Similarly, for some new programming languages such as Rust we cur-
rently provide only a subset of demos. With further development this is planned to grow.

For the more general applications there are demos in C / C++, C#, Delphi / Pascal, Python, LabVIEW and
MATLAB. For each of these programming languages / systems there are different demo versions for the dif-
ferent measurement modes:

Histogramming Mode Demos

These demos show how to use the standard measurement mode for on–board histogramming. These are the
simplest demos and the best starting point for your own experiments. In case of LabVIEW there are a simple
and an advanced demo, the latter being more sophisticated and allowing interactive input of most parameters
on the fly. In some programming languages (C, C#) there are also advanced demos to show hardware
triggered histigram measurements.

TTTR Mode Demos

These demos show how to use TTTR mode, i.e. recording individual photon events instead of forming histo-
grams on board. This permits sophisticated data analysis methods, such as single molecule burst detection,
the combination of fluorescence lifetime measurement with FCS and picosecond coincidence correlation or
even Fluorescence Lifetime Imaging (FLIM).

The HydraHarp 500 actually supports two different Time–Tagging modes, T2 and T3 mode. When referring to
both modes together we use the general term TTTR here. For details on the two modes, please refer to your
HydraHarp 500 manual. In TTTR mode it is also possible to record external LVTTL signal transitions as mark-
ers in the TTTR data stream (see the HydraHarp 500 manual) which is typically used e.g., for FLIM.

Because TTTR mode requires real–time processing and / or real–time storing of data, the TTTR demos are
more demanding both in programming skills and computer performance. Also consider the speed perform-
ance of your programming language. Interpreted Python and MATLAB, for example, are very slow. For more
information on TTTR mode consult the corresponding section in your HydraHarp 500 manual.

Note that you must not call any of the HH500__Setxxx routines while a TTTR measurement is running. The
result would potentially be loss of events in the TTTR data stream. Changing settings during a measurement
makes no sense anyway, since it would introduce inconsistency in the collected data.

Details on how to interpret and process the TTTR records can be studied in the advanced LabVIEW demos
and in the advanced demo tttrmode_instant_processing (C, Python, Delphi, C#). You may also con-
sult the file demo code installed together with the regular HydraHarp 500 software.

Page 9

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Continuous Mode Demos

This measurement mode allows continuous and gapless streaming of short term histograms to the PC. Since
it is an advanced real-time technique, beginners are advised better not to use it for their first experiments. For
the same reason, demos exist only in some of the programming languages. For details please see the Ad-
vanced Techniques Section 5.6.

4.2. The Demo Applications by Programming Language
As outlined above, there are demos for C / C++, C#, Pascal, Python, Rust, LabVIEW and MATLAB. For each
of these programming languages there are different demo versions for the measurement modes listed in the
previous section. They are not 100% identical. For some programming languages (C, Python, Delphi, C#,
LabVIEW) there are also some advanced demos, typically residing in a subfolder advanced. In this context
see section 5 on advanced techniques.

This manual explains the special aspects of using the HydraHarp 500 programming library, it does NOT teach
you how to program in the chosen programming language. We strongly recommend that you do not choose
to develop a software project with the HydraHarp 500 library as your first attempt at programming. You will
also need some knowledge about shared library concepts and related Linux conventions. The ultimate refer-
ence for details about how to use the library is in any case the source code of the demos and the header files
of the library (hh500lib.h and hh500defin.h).

Be warned that wrong parameters and / or variables, invalid pointers and buffer sizes, inappropriate calling
sequences etc. may crash your application and / or your complete computer. The latter is quite unlikely but it
makes sense to play safe. Make sure to backup your data and / or perform your development work on a ded-
icated machine that does not contain valuable data. Note that the library is not re–entrant w.r.t. an individual
device instance. This means, it cannot be accessed from multiple, concurrent processes or threads at the
same time unless separate device instances are being used. All calls to one device instance must be made
sequentially, preferably in the order shown by the demos.

The C / C++ Demos

These demos are provided in the C subfolder. The code is actually plain C to provide the smallest common
denominator for C and C++. Consult hh500lib.h, hh500defin.h and this manual for reference on the
library calls. The library functions must be declared as extern "C" when used from C++. This is achieved
most elegantly by wrapping the entire include statements for the library headers:

extern "C"

{

 #include "hh500defin.h"

 #include "hh500lib.h"

}

To test any of the demos, consult the HydraHarp 500 manual for setting up your hardware and establishing a
measurement setup that runs correctly and generates useable test data. This is best done with the regular
HydraHarp 500 software under Windows. Compare the settings (notably sync divider, binning and trigger
levels) with those used in the demo and use the values that work in your setup when building and testing the
demos. Observe the mode input variable going into HH500_Initialize. It makes a difference if you run T2
or T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The C demos are designed to run in a console or terminal window. They need no command line input para-
meters. They create their output files in their current working directory (*.out). The output files will be AS-
CII–readable in case of the standard histogramming demos. For this demo, the ASCII files will contain mul-
tiple columns of integer numbers representing the counts from the 65,536 histogram bins. You can use any
editor or a data visualization program to inspect the ASCII histograms. For the TTTR modes the output is
stored in binary format for performance reasons. The binary files must be read by dedicated programs ac-
cording to the format they were written in. The file read demos provided for PicoQuant TTTR data files (.PTU)
and the advanced demo tttrmode_instant_processing can be used as a starting point to learn this.

Page 10

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

The file read demos cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the HH500Lib demos focused on the key issues of
using the library.

The C# Demos

The C# demos are provided in the Csharp subfolder. They have been tested with Mono.

Calling a native library (unmanaged code) from C# requires the DllImport attribute and correct type spe-
cification of the parameters. Not all types are easily portable. Especially C strings require special handling.
The demos show how to do this.

With the C# demos you also need to check whether the hard-coded settings are suitable for your actual in -
strument setup. The demos are designed to run in a terminal window. They need no command line input
parameters. They create their output files in their current working directory. The output files will be ASCII in
case of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the
output is stored in binary format for simplicity and performance reasons. The ASCII files of the histogramming
demo will contain single or multiple columns of integer numbers representing the counts from the histogram
channels. You can use any editor or a data visualization program to inspect the ASCII histograms. The binary
files must be read by dedicated programs according to the format they were written in. The file read demos
provided for PicoQuant TTTR data files (.PTU) and the advanced demo tttrmode_instant_processing
can be used as a starting point to learn this. The file read demos cannot be used directly on the demo output
because they expect a file header the demos do not generate. This is intentional in order to keep the
HH500Lib demos focused on the key issues of using the library.

Observe the mode input variable going into HH500_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Pascal/ Lazarus Demos

Users of FreePascal / Lazarus please refer to the Pascal folder. The source code for Delphi (Windows) and
Lazarus is essentially the same. Everything for the respective Delphi demo is in the project file for that demo
(*.DPR). Lazarus users can use the *.LPI files that refer to the same *.DPR files.

In order to make the exports of libh500lib.so known to your application you have to declare each func-
tion in your Pascal code as ‘external’. This is already prepared in the demo source code.

The Delphi / Lazarus demos are also designed to run in a terminal window. They need no command line input
parameters. They create output files in their current working directory. The output files of the will be ASCII in
case of the histogramming demo and some of the advanced demos. In the simplest TTTR mode demo the
output is stored in binary format for simplicity and performance reasons. You can use any data visualization
program to inspect the ASCII histograms. The binary files must be read by dedicated programs according to
the format they were written in. The file read demos for the regular HydraHarp TTTR data files (.PTU) and the
advanced demo tttrmode_instant_processing can be used as a starting point to learn this. The file
read demos cannot be used directly on the demo output because they expect a file header the demos do not
generate. This is intentional in order to keep the HH500Lib demos focused on the key issues of using the lib-
rary.

Observe the mode input variable going into HH500_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Python Demos

The Python demos are in the Python folder. Python users should start their work in histogramming mode
from histomode.py. The code should be fairly self explanatory. If you update to a new library version
please check the function parameters of your existing code against hh500lib.h in the HH500Lib installation
directory. Note that special care must be taken where pointers to C–arrays are passed as function argu-
ments.

Page 11

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

The Python demos create output files in their current working directory. The output file will be readable text in
case of the standard histogramming demo and some of the advanced demos. The histogramming demo out-
put files will contain columns of integer numbers representing the counts from the histogram channels. You
can use any data visualization program to inspect the histograms. In the simplest TTTR mode demo the out-
put is stored in binary format for performance reasons. The binary files must be read by dedicated programs
according to the format they were written in. The file read demos for the regular HydraHarp TTTR data files
(.PTU) and the advanced demo tttrmode_instant_processing can be used as a starting point to learn
this. The file read demos cannot be used directly on the demo output because they expect a file header the
demos do not generate. This is intentional in order to keep the HH500Lib demos focused on the key issues of
using the library. Note that even if it may be tempting to directly use the advanced demo tttrmode_in-
stant_processing you should not do this routinely. It creates very large files and throughput with inter-
preted Python is very poor.

Observe the mode input variable going into HH500_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The LabVIEW Demos

The LabVIEW demos for Linux are identical with the LabVIEW demos for Windows. They automatically detect
the operating system and and accordingly select the appropriate library name and path. Unfortunately we do
not have LabVIEW for Linux, so this feature is untested under Linux. Pleas kindly report success or error if
you happen to work with LabVIEW for Linux.

The LabVIEW demo VIs are provided in the src sub-folder inside the LabVIEW2020 folder. They can be run
only in 64 bit LabVIEW. The original code was created with LabVIEW 2020, and a corresponding LabVIEW
project file (HydraHarp500.lvproj) is provided for that version. For backward compatibility the source
code was also converted to LabVIEW 2010.

The first demo (1_SimpleDemo_HH500Histo.vi) is very simple, demonstrating the basic usage and call-
ing sequence of the provided SubVIs encapsulating the DLL functionality, which are assembled inside the
LabVIEW library hh500lib_x86_x64_UIThread.llb (in the folder _lib/PQ/HydraHarp500). The
demo starts by calling some of these library functions to setup the hardware in a defined state and continues
with a measurement in histogramming mode by calling the corresponding library functions inside a while-loop.
Histograms and count rates for all available hardware channels are displayed on the front panel in a wave-
form graph (you might have to select AutoScale for the axes) and numeric indicators, respectively. The
measurement is stopped if either the acquisition time has expired, if an error occurs (which is reported in the
error out cluster), if an overflow occurs or if the user hits the STOP button.

The second demo for histogramming mode (2_AdvancedDemo_HH500Histo.vi) is a more sophisticated
one allowing the user to control all hardware settings “on the fly”, i.e. to change settings like acquisition time
(Acqu. ms), resolution (Resol. ms), offset (Offset ns in Histogram frame), number of histogram bins
(Num Bins), etc. before, after or while running a measurement. In contrast to the first demo settings for each
available channel (including the Sync channel) can be changed individually (Settings button) and consec-
utive measurements can be carried out without leaving the program (Run button; changes to Stop after
pressing). Additionally, measurements can be done either as “single shot” or in a continuous manner
(Conti. Checkbox). Various information are provided on the front panel like histograms and count rates for
each available (and enabled) channel as waveform graphs (you may have to select AutoScale for the
axes), Sync rate, readout rate, total counts and status information in the status bar, etc. In case an error oc-
curs a popup window informs the user about that error and the program is stopped.

The program structure of this demo is based upon the National Instruments recommendation for queued
message and event handlers for single thread applications. Some comments inside the source code should
help the user to get an overview of the program and to facilitate the development of customized extensions.

The third LabVIEW demo (3_AdvancedDemo_HH500T3.vi) is the most advanced one and demonstrates
the usage of T3 mode including real-time evaluation of the collected TTTR records. The front panel re-
sembles the second demo but in addition to the histogram display a second waveform graph (you may have
to select AutoScale for the axes) also displays a time chart of the incoming photons for each available (and
enabled) channel with a time resolution depending on the Sync rate and the entry in the Resol. ms control
inside the Time Trace frame (which can be set in multiples of two). In contrast to the second demo there is
no control to set an overflow level or the number of histogram bins, which is fixed to 32.768 in T3 mode. Also
in addition to the acquisition time (called T3Acq. ms in this demo; set to 360.000.000 ms = 100 h by default)

Page 12

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

a second time (Int.Time ms in Histogram frame) can be set which controls the integration time for accumu-
lating a histogram.

The program structure of this demo extends that of the second demo by extensive use of LabVIEW type-
definitions and two additional threads: a data processing thread (HH500_DataProcThread.vi) and a visu-
alization thread. The communication between these threads is accomplished by LabVIEW queues. Thereby
the FIFO read function (case ReadFiFo in UIThread) can be called as fast as possible without any additional
latencies from data processing workload.

Some comments inside the source code should help the user to get an overview of the program and to facilit -
ate the development of customized extensions. Please note that due to performance reasons some of the
SubVIs inside HH500_DataProcThread.vi have been inlined for performance, so that no debugging is
possible on these SubVIs.

Program specific SubVIs and type-definitions used by the demos are organized in corresponding sub-folders
inside the demo folder (SubVIs, Types). General helper functions and type-definitions as well as DLL encap-
sulating libraries (*.llb) can be found in the _lib folder (containing further sub-folders) inside the demo folder.
In order to facilitate the convenient use of all DLL functions, additional VIs called HH500_AllDllFunc-
tions_xxx.vi have been included. These VIs are not meant to be executed but should only give a struc-
tured overview of all available DLL functions and their functional context.

The MATLAB Demos

The MATLAB demos are provided in the MATLAB folder. They are contained in .m files. You need to have a
MATLAB version that supports the loadlibrary and calllib commands. The earliest version we have
tested in this regard was MATLAB 7.3 (under Windows) but any version from 6.5 on should work. For your
specific version of MATLAB, please check the documentation of the MATLAB command loadlibrary as to
whether and how it works. Be careful about the header file name specified in loadlibrary. The names are
case sensitive and spelling errors will lead to an apparently successful load - but later no library calls will
work.

The MATLAB demos are designed to run inside the MATLAB console. They need no command line input
parameters. They create output files in their current working directory. The output file will be ASCII in case of
the histogramming demo. In TTTR mode the output is stored in binary format for simplicity and performance
reasons. You can use any data visualization program to inspect the ASCII histograms. The binary files from
TTTR mode must be read by dedicated programs according to the format they were written in. The file read
demos for the regular HydraHarp TTTR data files (.PTU) can be used as a starting point. They cannot be
used directly on the binary demo output because they expect a file header the demos do not generate. This is
intentional in order to keep the HH500Lib demos focused on the key issues of using the library. The file demo
code can (with minor adaptions) in principle be used to process the TTTR records on the fly. However, MAT-
LAB scripts are relatively slow compared to properly compiled code. This may impose throughput limits. You
might want to consider compiling Mex files instead. In this case please study the advanced demos
tttrmode_instant_processing (C, Python, Delphi, C#) which can be used as a starting point to learn
this.

Observe the mode input variable going into HH500_Initialize. It makes a difference if you run T2 or
T3 mode. For instance, T2 mode will not allow you to work with high sync rates. For meaningful measure-
ments you will need to adjust the sync divider and the resolution (binning) dependent on your choice of mode.

The Rust Demo

For Rust there is currently only one demo for simple TTTR mode data recording. For ambitious programmers
this should be sufficient as a starting point to also port the more advanced demos from C to Rust.

Page 13

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

5. Advanced Techniques

5.1. Using Multiple Devices
The library is designed to work with multiple HydraHarp devices (up to 8). Most of the demos use only the
first device found. In selected programming languages (C, C#) there is an advanced demo showing how to
use multiple devices in TTTR mode. If you wish to use some other demo with more than one HydraHarp you
need to modify the code accordingly. At the API level of HH500Lib the devices are distinguished by a device
index (0 .. 7). The device order corresponds to the order in which Windows enumerates the devices. If the
devices were plugged in or switched on sequentially when Windows was already up and running, the order is
given by that sequence. Otherwise it can be somewhat unpredictable. It may therefore be difficult to know
which physical device corresponds to the given device index. In order to solve this problem, the library routine
HH500_OpenDevice provides a second argument through which you can retrieve the serial number of the
physical device at the given device index. Similarly you can use HH500_GetSerialNumber any time later
on a device you have successfully opened. The serial number of a physical HydraHarp device can be found
at the back of the housing. It is an 8 digit number starting with 010. The leading zero will not be shown in the
serial number strings retrieved through HH500_OpenDevice or HH500_GetSerialNumber.

As outlined above, if you have more than one HydraHarp and you want to use them together you need to
modify the demo code accordingly. This requires the following steps: Take a look at the demo code where the
loop for opening the device(s) is. In most of the demos all the available devices are opened. You may want to
extend this so that you

1. filter out devices with a specific serial number and

2. do not hold open devices you don't actually need.

The latter is recommended because a device you hold open cannot be used by other programs such as the
regular HydraHarp software. Filtering out specific serial numbers is shown in the White Rabbit demo (see
the .c files under demos/C/advanced/tttrmode_white_rabbit).

By means of the device indices you picked out you can then extend the rest of the program so that every ac-
tion taken on the single device is also done on all devices of interest, i.e. initialization, setting of parameters,
starting a measurement etc. At the end the demos close all devices. It is recommended to keep this ap-
proach. It does no harm if you close a device that you haven't opened.

Note that combining multiple devices by software does not make a proper replacement for a hardware device
with more channels. This is due to multiple reasons. First, the clocks of the devices are not infinitely accurate
and may therefore drift apart. Second, the software-combined devices cannot start or stop measurements at
exactly the same time. Windows timing is not accurate enough and will cause unpredictable delays of some
milliseconds. Third, the data of the devices arrives in separate data streams and cannot easily be merged to-
gether. Even though the first and second issue can partially be solved by means of external clock signals or
White Rabbit, the approach is somewhat cumbersome.

5.2. Efficient Data Transfer
The TTTR modes are designed for fast real–time data acquisition. TTTR mode is most efficient in collecting
data with a maximum of information. It is therefore most likely to be used in sophisticated on–line data pro-
cessing scenarios, where it may be worth optimizing data throughput.

In order to achieve the highest throughput, the HydraHarp 500 uses USB bulk transfers. This is supported by
the PC hardware that can transfer data to the host memory without much help of the CPU. For the HydraHarp
this permits data throughput as high as 9 Mcps (USB 2.0) or even up to 90 Mcps (USB 3.0) and leaves time
for the host to perform other useful things, such as on–line data analysis or storing data to disk.

In TTTR mode the data transfer process is exposed to the library user in a single function HH500_ReadFiFo
that accepts a buffer address where the data is to be placed. The memory block size is fixed and must
provide space for 1,048,576 event records. However, the actual transfer size will depend on how much data
was available in the device’s FIFO buffer. The call will typically return after about 10 ms, or even less if no
more data is available. However, the actual time to return can sometimes also be slightly longer due to USB
overhead and unpredictable operating system latencies, especially when the PC or the USB connection is
slow.

Page 14

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

As noted above, the transfer is implemented efficiently without excessive CPU load. Nevertheless, assuming
large block sizes, the transfer takes some time. Linux therefore gives the unused CPU time to other pro-
cesses or threads i.e. it waits for completion of the transfer without burning CPU time. This wait time is what
can also be used for doing ‘useful things’ in terms of any desired data processing or storing within your own
application. The proper way of doing this is to use multi–threading. In this case you design your program with
two threads, one for collecting the data (i.e. working with HH500_ReadFiFo) and another for processing or
storing the data. Multiprocessor systems can benefit from this technique even more. Of course you need to
provide an appropriate data queue between the two threads and the means of thread synchronization.
Thread priorities are another issue to be considered. Finally, if your program has a graphic user interface you
may need a third thread to respond to user actions reasonably fast. Again, this an advanced technique and it
cannot be demonstrated in all detail here. Currently only the most advanced LabVIEW demo uses this tech-
nique. Greatest care must be taken not to access the HH500Lib routines from different threads without strict
control of mutual exclusion and maintaining the right sequence of function calls. However, the technique also
allows significant throughput improvements and advanced programmers may want to use it. It might be inter -
esting to note that this is how TTTR mode is implemented in the regular HydraHarp software, where sus-
tained count rates over 9 Mcps can be achieved with USB 2.0 and even up to 90 Mcps with USB 3.0.

When working with multiple devices, the overall USB throughput is usually limited by the host controller or
any hub the devices must share. You can increase overall throughput if you connect the individual devices to
separate host controllers without sharing hubs. If you install additional USB controller cards you should prefer
fast PCI–express models. However, modern mainboards often have multiple USB host controllers, so you
may not even need extra controller cards. In case of using multiple devices it is also beneficial for overall
throughput if you use multi–threading in order to fetch and store data from the individual devices in parallel.
Again, re–entrance issues must be observed carefully in this case, at least for all calls accessing the same
device.

5.3. Instant TTTR Data Processing
As outlined earlier, collecting TTTR mode streams is time critical when data rates are high. This is why such
streams are often just written to disk and then only subsequently post-processed. Nevertheless there are cir-
cumstances where it is desirable to process the data instantly “on the fly” as it arrives. This may be for the
purpose of an instant preview or for data reduction. The advanced LabVIEW demo nicely demonstrates how
to obtain an instant preview. This requires interpreting and bitwise dissecting the TTTR data records as well
as correcting for overflows. In order to demonstrate this also for other programming languages there are ad-
vanced demos in the subfolders tttrmode_instant_processing (C, Python, Delphi, C#). These demos
do not write binary output but instead perform an instant processing and write the results out in ASCII. Please
note well that this is done purely for educational purposes. Instant processing and writing the results out in
ASCII is time consuming and dramatically reduces the achievable troughput. Furthermore, the resulting files
are many times larger than the original binary data. Any meaningful application derived from these demos
should therefore not write out individual data records but perform some sort of application specific data analy-
sis for preview and/or data reduction. Typical and meaningful examples are histogramming (see subfolders
t3rmode_instant_histogramming in C, Python, Delphi and C#) or intensity over time traces as shown
in the LabVIEW demo. Please note also that such real-time processing requires a suitable choice of pro-
gramming language. For instance, interpreted Python and Matlab scripts are many times slower than natively
compiled code. Ultimate performance is obtained only with a proper compiled language such as C or Pascal.
Furthermore, true efficiency (and maximum throughput) can in such a scenario only be achieved by making
use of parallel processing on multiple CPUs. This requires programming with multiple threads. In this case
you should design your program with at least two threads, one for collecting the data (i.e. working with
HH500_ReadFiFo) and another (or more) for processing, displaying, or storing the data (see also section
5.2). This is not trivial and requires some programming experience.
If you need quick results and your throughput requirements are moderate you may still try and work with the
code from the demos in the subfolders tttrmode_instant_processing. For understanding the mecha-
nisms they are worth studying anyhow. Looking at the code you will see that after retrieving a block of TTTR
records via HH500_ReadFiFo there is a loop over that block with code to dissect each individual record. De-
pendent on what kind of record it is there will be different actions taken. A “special record” carries information
on overflows and markers while a regular event record carries photon timing data. While overflows will typi-
cally not be of further interest (except correcting for them as shown) the pieces of interest are markers and
photons. When they occur you notice the calls into the subroutines GotMarker and GotPhoton (with variants
for T2 and T3 mode). These are the points where you may want to accommodate you application specific
code for whatever you may want to do with a photon or a marker. In your derived code you may soon want to
throw out the ASCII output for each an every record. It is slow and only there for demonstration purposes.

Page 15

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

5.4. Working with Warnings
The library provides routines for obtaining and interpreting warnings about critical measurement conditions.
The mechanism and warning criteria are the same as those used in the regular HydraHarp software for Win-
dows. In order to obtain and use these warnings also in your custom software you may want to use the library
routine HH500_GetWarnings. This may help inexperienced users to notice possible mistakes before start-
ing a measurement or even during the measurement.

It is important to note that the generation of warnings is dependent on the current count rates and the current
measurement settings. It was decided that HH500_GetWarnings does not obtain the count rates on its own,
because the corresponding calls take some time and might waste too much processing time. It is therefore
necessary that the library routines for count rate retrieval (on all channels) have been called before
HH500_GetWarnings is called. Since most interactive measurement software periodically retrieves the
rates anyhow, this is not a serious complication. Note that there are library calls for retrieval of individual
count rates (HH500_GetSyncRate and HH500_GetCountRate) but in case of performance critical applica-
tions it is more efficient to use HH500_GetAllCountRates retrieving all rates in one call.

The routine HH500_GetWarnings delivers the cumulated warnings in the form of a bit field. In order to
translate this into readable information you can use HH500_GetWarningsText. Before passing the bit field
into HH500_GetWarningsText you can mask out individual warnings by means of the bit masks defined in
hh500defin.h. See the appendix section 7.3 for a description of the individual warnings.

5.5. Hardware Triggered Measurements
This measurement scheme allows to start and stop the acquisition by means of external LVTTL signals rather
than software comands. Since it is an advanced real-time technique, beginners are advised to not try their
first steps with it. For the same reason, demos exist only in C and C#.

Before using this scheme, consider when it is useful to do so. For instance, it may be tempting to use the
hardware triggering to implement very short histogramming durations. However, remember that TTTR mode
is usually the most efficient way of retrieving the maximum information on photon dynamics. By means of
marker inputs the photon events can be precisely assigned to complex external event scenarios.

The HydraHarp's data acquisition can be controlled in various ways. Default is the internal CTC (counter
timer circuit). In that case the measurement will take the duration set by the tacq parameter passed to
HH500_StartMeas. The other way of controlling the histogram boundaries (in time) is by external LVTTL
signals fed to the control connector pins C1 and C2 (see appendix section Connectors of the HydraHarp 500
manual). In that case it is possible to have the acquisition started and stopped when specific signals occur. It
is also possible to combine external starting with stopping through the internal CTC. The exact behavior of
this scheme is controlled by the parameters supplied to the call of HH500_SetMeasControl. Dependent on
the parameter meascontrol the following modes of operation can be obtained:

Symbolic Name Value Function

MEASCTRL_SINGLESHOT_CTC 0 Default value. Acquisition starts by software
command and runs until CTC expires. The duration
is set by the tacq parameter passed to
HH500_StartMeas.

MEASCTRL_C1_GATE 1 Data is collected for the period where C1 is active.
This can be the logical high or low period dependent
on the value supplied to the parameter
startedge.

MEASCTRL_C1_START_CTC_STOP 2 Data collection is started by a transition on C1 and
stopped by expiration of the internal CTC. Which
transition actually triggers the start is given by the
value supplied to the parameter startedge.
The duration is set by the tacq parameter passed
to HH500_StartMeas.

Page 16

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

MEASCTRL_C1_START_C2_STOP 3 Data collection is started by a transition on C1 and
stopped by by a transition on C2. Which transitions
actually trigger start and stop is given by the values
supplied to the parameters startedge and
stopedge.

MEASCTRL_WR_M2S 4 For White Rabbit only. The WR master shall remote-
start measurements on the WR slave. This setting
must be made identically on master and slave.

MEASCTRL_WR_S2M 5 For White Rabbit only. The WR slave shall remote-
start measurements on the WR master. This setting
must be made identically on master and slave.

MEASCTRL_SW_START_SW_STOP 6 This setting permits controlling the duration of
measurements purely by software and thereby
overcoming the limit of 100h imposed by the
hardware CTC. Note that in this case the results of
HH500_GetElapsedMeasTime will be less accurate.
Note also that this feature requires gateware of at
least April 2022.

The symbolic constants shown above are defined in hh500defin.h. There are also symbolic constants for
the parameters controlling the active edges (rising/falling).

Please study the demo code for external hardware triggering and observe the polling loops required to detect
the beginning and end of a measurement. Be aware that the speed of you computer and the delays intro -
duced by the operating system's task switching impose some limits on how fast you can run this scheme.

5.6. Working in Continuous Mode
This measurement mode works essentially like regular histogramming mode but it allows continuous and
seamless streaming of short term histograms to the PC. Since it is an advanced real-time technique, begin-
ners are advised better not to use it for their first exercises. For the same reason, the corresponding demos
exist only in some of the programming languages.

Before using this mode, consider when it is useful to do so. Remember that TTTR mode is usually the most
efficient and flexible way of retrieving the maximum information on photon dynamics. Only when the expected
count rates become very high and when the individual photon timing relations are not of interest it may be ad -
visable to switch to continuous mode.

The temporal boundaries of the individual histograms in a continuous mode stream can be controlled in two
different ways. One is by the HydraHarp's internal CTC (counter timer circuit). In that case the histograms will
take the duration set by the tacq parameter passed to HH500_StartMeas and they will line up seamlessly
in time. The other way of controlling the individual histogram boundaries (in time) is by external TTL signals
fed to the connectors C1 and C2. In that case it is possible to have new histograms started and stopped
when specific signals occur. It is also possible to combine external starting with stopping through the internal
CTC. Details are cotrolled by the parameters supplied to HH500_SetMeasControl. Dependent on the pa-
rameter meascontrol the following modes of operation can be selected:

Symbolic Name Value Function

MEASCTRL_CONT_C1_GATED 7 Histograms are collected for each period where C1
is active. This can be the logical high or low periods
dependent on the value supplied to the parameter
startedge.

Page 17

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

MEASCTRL_CONT_C1_START_CTC_STOP 8 Histogram collection is started by a transition on C1
and stopped by expiration of the internal CTC.
Which transition actually triggers the start is given
by the value supplied to the parameter startedge.
Histogram duration is set by the tacq parameter
passed to HH500_StartMeas. The current
histogram ends if a new trigger occurs before the
CTC has expired.

MEASCTRL_CONT_CTC_RESTART 9 Histogram collection is started and stopped
exclusively by the internal CTC. Consecutive
histograms will line up without gaps. Histogram
duration is set by the tacq parameter passed to
HH500_StartMeas.

The symbolic constants shown above are defined in hh500defin.h.. There are also symbolic constants for
the parameters controlling the active edges (rising/falling). Regarding HH500_StartMeas only the parameter
startedge is meaningful in continuous mode. The parameter stopedge is only used in regular histogram-
ing mode.

In continuous mode each block of histograms (for the used number of channels) is retrieved as a structured
data block via HH500_GetContModeBlock. This data block has a small header that provides the number of
the block, the number of channels in the block, the histogram length, the starting time and duration of the his -
togramming in nanoseconds, some flags, and the occurence count of each marker signal. Please see the Hy-
draHarp 500 manual for more information on markers (normally used in TTTR mode) and study the source
code of the continuous mode demos for details on the continuous mode data block structure. After the header
there is the actual histogram data and after that follows a sum of all counts in that histogram. The latter is
useful in applications where mere intensity dynamics are of interest.

A complication in using these data structures is that the size of the data blocks depends both on the chosen
number of time bins and on the number of active input channels.The demo code shows how to deal with this.
To make it easier to extract the histogram data there is a helper routine for the dissection of the block headers
HH500_DissectContModeBlkHdr and another routine HH500_ExtractContModeBlkData to extract
the histogram data. The demo code makes it pretty clear how this works.

5.7. Working with the External FPGA Interface
The external FPGA interface (EFI) permits retrieving TTTR mode data at substantially higher bandwidth than
via USB. Furthermore, since the data is streamed directly to an FPGA, it permits custom data processing in
real-time, way beyond the capabilities of a PC in terms of speed and latency.

The external FPGA interface operates via the SFP port at the front, normally used for White Rabbit connec -
tions. This means that the external FPGA interface and White Rabbit can not be used at the same time.

In order to enable and use the EFI from the software side, there are a set of dedicated library routines. They
are listed in section 7.2 for completeness. However, since using the EFI is an advanced topic in its own, also
involving a large amount of FPGA programming details, there is a separate manual for this.The most recent
EFI pack including manual and demos can be downloaded from the from the PicoQuant website at https://
www.picoquant.com/downloads.

5.8. Working with Event Filtering
Filtering TTTR data streams helps to reduce USB bus load in TTTR mode by eliminating photon events that
carry no information of interest as typically found in many coincidence correlation experiments. Please read
the HydraHarp 500 manual for more details.

There are two types of event filters. The Group Filters are implemented in the local FPGA, processing a
group of input channels. There are two groups where each group consists of 4 channels (HydraHarp 500 S)
or 8 channels (HydraHarp 500 M). The first group consists of the odd channel numbers and the second group
conists of the even channel numbers (referring to the numbering scheme 1 .. N as shown on the front panel).
Each Group Filter can act only on the input channels within its own group and never on the other group or the

Page 18

https://www.picoquant.com/downloads
https://www.picoquant.com/downloads

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

sync channel. If the hardware has only a subset of channels enabled (economy versions) the group structure
is still the same. Channels that are not enabled will simply deliver no data and will not participate in the filter-
ing mechanism.

The Main Filter is implemented in the main FPGA processing the aggregated events arriving from the FPGAs
of the measurement units. The Main Filter can therefore act on all channels of the HydraHarp 500 device in-
cluding the sync channel. Since the Group Filters and Main Filter form a processing chain, the overall filtering
result depends on their combined action. Both filters are by default disabled upon device initialization and can
be independently enabled when needed.

Both filters follow the same concept but with independently programmable parameters. The parameter
timerange determines the time window the filter is acting on. The parameter matchcnt specifies how
many other events must fall into the chosen time window for the filter condition to act on the event at hand.
The parameter inverse inverts the filter action, i.e. when the filter would regularly have eliminated an event
it will then keep it and vice versa. For the typical case, let it be not inverted. Then, if matchcnt is 1 we will
obtain a simple ‘singles filter’. This is the most straight forward and most useful filter in typical quantum optics
experiments. It will suppress all events that do not have at least one coincident event within the chosen time
range, be this in the same or any other channel.

In addition to the filter parameters explained so far it is possible to mark individual channels for use. Used
channels will take part in the filtering process. Unused channels will be suppressed altogether. Furthermore, it
is possible to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as
‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, pro-
vided the filter is enabled.

As outlined earlier, the Group Filters and Main Filter form a daisychain and the overall filtering result depends
on their combined action. It is usually sufficient and easier to use the Main Filter alone. The only reasons for
using the Row Filter(s) are early data reduction, so as to not overload the Main Filter, and the possible need
for more complex filters, e.g. with different time ranges.

The filters can also be switched into a test mode where the data is not transferred to USB. Instead one will
then use HH500_GetRowFilteredRates and HH500_GetMainFilteredRates in order to check the
effect of data rate reduction after the Row Filter and after the Main Filter. This helps to initially try out and opti-
mize the filter parameters without running into FIFO overrun issues.

5.9. Synchronizing Devices with White Rabbit
For a first understanding of what White Rabbit (WR) is and how the HydraHarp supports it, please read the
section on the White Rabbit Dialog in the regular HydraHarp software manual. The dialog described there is
used to establish a White Rabbit connection and uses the same basic library routines for WR as documented
in section 7.2.7 here. Even though it would therefore be possible to implement this step of making a White
Rabbit connection in the WR demo code, it was decided not to do this for the following reasons: The initializa-
tion code would clutter the demo and it would unduly strain the EEPROMs of the devices because some of it
involves writing data into them. Indeed it is not necessary to do this each time again because once there is
valid initialization data and a startup script placed in the EEPROMs of the devices they will automatically es-
tablish the WR connection at power-up.

For understanding of the next paragraphs please study the White Rabbit demo code in the HH500Lib installa-
tion folder demos\C\advanced\tttrmode_withe_rabbit. The demo consists of two pieces, wr_mas-
ter.c and wr_slave.c, which upon build will result in two executables. It assumes that the WR connection
has been appropriately prepared and only begins with opening the master and slave devices and initializing
them with the suitable choice of external clock reference code. The special feature of this demo is that it
shows how one HydraHarp device can remote-start another so that their measurements are beginning
closely aligned in time. This works for any measurement mode, however, as the most interesting use case for
this is TTTR mode, the WR demo implements the latter.

The demo uses hardcoded settings for the serial numbers of the used devices, for the input trigger levels, etc.
You need to change these to match your specific setup. Using specific serial numbers has the benefit that for
test purposes one can execute them on the same computer without risking a confusion of WR master and
WR slave. Note that the term master and slave here primarily means the two device’s relation in terms of
their WR connection. The ability of one remote-starting the other (or more) is independent of their roles in the
WR connenction. In this demo we make the WR master remote-start the WR slave, which could well be re-
versed but would then look counter-intuitive. The places where this decision is encoded are the calls of
HH500_SetMeasControl(devNum_WR_Master, MEASCTRL_WR_M2S, 0, 0) in wr_master.c and

Page 19

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

HH500_SetMeasControl(devNum_WR_Slave1, MEASCTRL_WR_M2S, 0, 0) in wr_master.c,
where MEASCTRL_WR_M2S means that the WR master shall remote-start the WR slave(s). The demo only
uses one slave for which a point-to-point fiber connection is sufficient. It could easily be extended for multiple
slaves which then requires a WR switch to connect them all.

The next point of interest in the demo code are the calls to HH500_StartMeas for master and slave. It is
plausible that the master is started by software but it may seem strange that the same is done at the slave
side. The magic is that because of the earlier setting of MEASCTRL_WR_M2S the slave is aware that it shall be
remote-started over WR. It therefore interprets HH500_StartMeas such as to prepare (arm) for remote
start rather than start by itself. Important and directly related is now the function waitForRemoteStart that
exists only on the slave side. This is where the slave waits for its start over WR. While it would in principle be
possible to implement this wait inside HH500_StartMeas, it would cause that function to block forever if the
remote start does not arrive. It was therefore decided to implement waitForRemoteStart as a polling loop
in the user code where it can easily be interrupted if need be. Once both devices are started, both master and
slave will begin fetching their TTTR data and write it to disk, each side writing a file of their own. The executa-
bles can be run at remote locations or on the same computer. In their data collection loops both sides are
polling for the end of the measurement by calling HH500_CTCStatus. When the expiration is detected they
still do a few more rounds to make sure all data has actually been retrieved from the FIFOs.

For speed reasons only binary data is saved by master and slave. Only after the measurement is completed
the binary files are processed and converted to ASCII files. The purpose is that then the two files can be eas -
ily compared in order to verify the precision of the WR synchronization. Such a comparison of course re-
quires comparable event data being fed to master and slave device. In order to achieve this, the setup shown
in the following figure was used.

A high precision, low jitter signal generator (e.g. Stanford Research Systems model CG635) delivers a contin-
uous pulse train of fixed period, e.g. 1 MHz. The box labelled 1:2 is a power splitter (reflection-free T-pad) that
delivers the same signal to master and slave. Assuming that the measurement will be done in T2 mode, the
signals can go to the Sync inputs of the devices but any other input channel is fine too. The WR link can be a
direct fiber between master and slave but optionally one or more WR switches can sit inbetween. This would
allow connecting more slaves. Running the demo code with such a setup would result in two output files
where the same set of event records should appear with time tags differing only by the timing uncertainty (jit-
ter) of the HydraHarp and the WR connection and some small residual offset. If you are planning to use WR
to synchronize two HydraHarps it is recommended to replicate this little experiment to get familiar with the
concept and to verify your setup. When the measurement is completed you can use the Python script
eval.py to compare the output files. It calculates and plots the event time differences between master and
slave. Furthermore, it caluclates the rms jitter (i.e. standard deviation) of the event time differences between

Page 20

MH 150/160

WR Switch

Generator

WR master

WR
slave

WR
master

WR slave

1:2
 SYNC CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

WR USB Status

optional

MH 150/160

 SYNC CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

WR USB Status

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

master and slave. For comparison it also calculates the local rms jitter of the master’s and the slave’s pulse
period.

An interesting detail in the demo code is the call to HH500_GetStartTime on both sides. It returns the start
time of the measurement in picoseconds. The result is to be interpreted in the sense of a unix time, i.e.
elapsed picoseconds since January 1st 1970 00:00:00 UTC (Universal Time). Note that the actual resolution
is the device’s base resolution. As there is no data type to hold the possibly large numbers it is passed in the
form of three unsigned integers. In order to do a proper conversion into a single time value a suitable large in-
teger library must be used. Here for the purpose of this demo we just display the raw data. Although in the
demo the master and slave performed a WR synchronized measurement, their time alignment can only be
accurate to within the same WR TAI cycle (16ns). A correction by means of HH500_GetStartTime on the
two sides can be used to improve the alignment to within ±3 ns. Even in scenarios where master and slave
were started manually with a large unknown delay, the result of HH500_GetStartTime on the two sides
can be used to determine and correct their relative offset so that the time tag data can be aligned to within a
few ns.

Page 21

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

6. Problems, Tips & Tricks

6.1. PC Performance Requirements
Performance requirements for the library are the same as with the standard HydraHarp software for Win-
dows. The HydraHarp device and its software interface are a complex real–time measurement system de-
manding appropriate performance both from the host PC and the operating system. This is why a reasonably
modern CPU and sufficient memory are required. At least a dual core, 2 GHz processor, 4 GB of memory and
a fast hard disk are recommended. However, as long as you do not use TTTR mode, these issues should not
be of severe impact.

6.2. USB Interface
In order to deliver maximum throughput, the HydraHarp 500 uses state–of–the–art USB bulk transfers. This is
why the HydraHarp must rely on having a USB host interface matched to the device speed. USB host control-
lers of modern PCs are usually integrated on the mainboard. For older PCs they may be upgraded as plug-in
cards. Throughput is then usually limited by the host controller and operating system, not the HydraHarp. Do
not run other bandwidth demanding devices on the same USB controller when working with the HydraHarp.
USB cables must be qualified for the USB speed you are using. Old and cheap cables often do not meed this
requirement and can lead to errors and malfunction. Similarly, many PCs have poor internal USB cabling, so
that USB sockets at the front of the PC are often unreliable. Obscure USB errors may also result from subtle
damages to USB cables, caused e.g., by sharply bending or crushing them.

6.3. Troubleshooting
Troubleshooting should begin by testing your hardware setup. This is best accomplished by the standard Hy-
draHarp software for Windows (or Linux with Wine). Only if this software is working properly you should start
working with the library. If there are problems even with the standard software, please consult the HydraHarp
manual for detailed troubleshooting advice.

Under Linux the HydraHarp programming library will access the HydraHarp device through Libusb. You need
to make sure Libusb has been installed correctly. Normally this is readily provided by all recent Linux distribu-
tions. You can use lsusb to check if the device has been detected and is accessible. Please consult the Hy-
draHarp manual for hardware related problem solutions. Note that an attempt at opening a device that is cur-
rently used by another process will result in the error code ERROR_DEVICE_BUSY being returned from
HH500_OpenDevice. Opening the device may also fail due to insufficient access rights (permissions). This
may appear as if the device is not present at all. In this case look at the output of lsusb. The HydraHarp
should appear with its vendor ID 0D0E and the device ID 0013. If the device is actually listed there and you
still cannot open it then you probably have not set the right access permissions. See section 3.2 to fix this.

As a next step, try the readily compiled demos supplied with the library. For first tests take the standard histo -
gramming demos. If this is working, your own programs should work as well. Note that the hard coded set-
tings may not be compatible with your experimental setup. Then the pre–compiled demos may not work as
expected. In this case you need to change the settings and then rebuild the executable unless you use a
scripted language.

6.4. Version tracking
While PicoQuant will always try to maintain a maximum of continuity in further hardware and software devel-
opment, changes for the benefit of technical progress cannot always be avoided. It may therefore happen,
that data structures, calling conventions or program flow will change. In order to design programs that will re -
cognize such changes with a minimum of trouble we strongly recommend that you make use of the functions
provided for version retrieval of hardware and library. In any case your software should issue a warning if it
detects versions other than those it was tested with. There is a function call that you can use to retrieve the
library version number (see section 7.2). Note that this call returns only the major two digits of the version
(e.g. 4.0). The library actually has two further sub–version digits, so that the complete version number has
four digits (e.g. 4.0.0.0). These sub–digits help to identify intermediate versions that may have been released

Page 22

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

for minor updates or bug fixes. The interface of releases with identical major version will remain the same.
The minor version is typically incremented when there are new features or functions added without breaking
compatibilty in regard to the original interface of the corresponding major release. The very last digit is typic-
ally incremented upon bugfixes without functional changes.

6.5. New Linux Versions
The library has good chances to remain compatible with upcoming Linux versions. This is because the inter -
face of libusb is likely to remain unchanged, even if libusb changes internally. You can even revert to an
earlier version if necessary. Of course we will also try to catch up with new developments that might break
compatibility, so that we will provide upgrades when necessary. However, note that this is work carried out
voluntarily and implies no warranties for future support.

6.6. Software Updates
We constantly improve and update the software for our instruments. This includes updates of the configur-
able hardware (FPGA). Such updates are important as they may affect reliability and interoperability with
other products. The software updates are free of charge, unless major new functionality is added. It is
strongly recommended that you check for software updates before investing time into a larger programming
effort.

6.7. Bug Reports and Support
The HydraHarp 500 TCSPC system has gone through extensive testing. It builds on over 25 years of experi-
ence with several predecessor models and the feedback of hundreds of users. Nevertheless, it is a fairly
complex product and some bugs may still be found. In any case we would like to offer you our support if you
experience problems with the system. Do not hesitate to contact PicoQuant in case of difficulties with your
HydraHarp.

If you observe errors or bugs caused by the HydraHarp system please try to find a reproducible error situ-
ation. Then email a detailed description of the problem and how to reproduce it, including all relevant circum-
stances to support@picoquant.com. Alternatively you can also use our support page at www.picoquant.com/
contact/support. Please include a listing of your PC configuration including hardware, OS version, versions of
used tools, etc, and attach it to your error report. Your feedback will help us to improve the product and docu-
mentation.

A very useful feature of HH500Lib is the API call HH500_SaveDebugDump. It is provided to help debugging
gateware issues by letting the user save a snapshot of the device’s internal FPGA states to a file that then
can be submitted for support. Please implement this feature in your custom code whenever feasible and in-
voke HH500_SaveDebugDump immedialtely after detecting a FLAG_SYSERROR from HH500_GetFlags
and in case of errors in HH500_Initialize. Then provide the saved file(s) for support.

Of course we also appreciate good news: If you have obtained exciting results with one of our instruments,
please let us know, and where appropriate, please mention the instrument in your publications.

At our Website we also maintain a large bibliography of publications referring to our instruments. It may serve
as a reference for you and other potential users. See http://www.picoquant.com/scientific/references. Please
kindly submit your publication references for addition to this list.

Page 23

http://www.picoquant.com/scientific/references
http://www.picoquant.com/contact/support
http://www.picoquant.com/contact/support
mailto://support@picoquant.com

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7. Appendix

7.1. Data Types
The HydraHarp programming library is written in C and its data types correspond to C / C++ data types with
bit-widths as follows:

char 8 bit, byte (or characters in ASCII)

short int 16 bit signed integer

unsigned short int 16 bit unsigned integer

int
long int

32 bit signed integer

unsigned int
unsigned long int

32 bit unsigned integer

__int64
long long int

 64 bit signed integer

unsigned int64
unsigned long long int

 64 bit unsigned integer

float 32 bit floating point number

double 64 bit floating point number

Note that on platforms other than the x86 architecture byte swapping may occur when HydraHarp data are
used there for further processing. We recommend using the native x86 architecture environment consistently.

7.2. Functions Exported by HH500Lib.so
See hh500defin.h for predefined constants given in capital letters here. Return values < 0 denote errors.
See errorcodes.h for the error codes. Note that HH500Lib is a multi-device library with the capability
to control more than one HydraHarp simultaneously. For that reason all device specific functions (i.e. the
functions from section 7.2.2 on) take a device index as first argument. Note that functions taking a channel
number as an argument expect the channels enumerated 0..N-1 while the interactive HydraHarp software as
well as the physical front panel enumerates the channels 1..N. This is due to internal data structures and for
consistency with earlier products. It is also possible to pass the channel number -1 into such functions and
thereby make them act on all input channels (except sync) simultaneously.

Page 24

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7.2.1. General Functions
These function calls work independent from any device.

int HH500_GetLibraryVersion (char* vers);

arguments: vers: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Use this call to ensure compatibility of the library with your own application.

int HH500_GetErrorString (char* errstring, int errcode);

arguments: errstring: pointer to a buffer for at least 40 characters
errcode: error code returned from a HH500_xxx function call

return value: =0 success
<0 error

Note: This function is provided to obtain readable error strings that explain the cause of the error better than the numerical error
code. Use these in error handling message boxes, support enquiries etc.

7.2.2. Device Related Functions
All functions below are device related and require a device index.

int HH500_OpenDevice (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

Note: Once a device is opened by your software it will not be available for use by other programs until you close it.

int HH500_CloseDevice (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: Closes and releases the device for use by other programs.

int HH500_Initialize (int devidx, int mode, int refsource);

arguments: devidx: device index 0..7
mode: measurement mode

0 = histogramming mode
2 = T2 mode
3 = T3 mode
8 = continuous histogramming mode

refsource: reference clock to use
0 = use internal clock
1 = use 10 MHz external clock
2 = White Rabbit master with generic partner
3 = White Rabbit slave with generic partner
4 = White Rabbit grand master with generic partner

Page 25

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

5 = use 10 MHz + PPS from GPS receiver
6 = use 10 MHz + PPS + time via UART from GPS receiver
7 = White Rabbit master with HydraHarp 500 as partner
8 = White Rabbit slave with HydraHarp 500 as partner
9 = White Rabbit grand master with HydraHarp 500 partner

return value: =0 success
<0 error

Note: This routine must be called before any of the other routines below can be used. Note that some of them depend on the
measurement mode you select here. See the HydraHarp 500 manual for more information on the measurement modes, ex-
ternal clock, and White Rabbit (WR). Note that selecting WR as a clock source requires that a WR connection has actually
been established beforehand. Unless the WR connection is established by a WR startup script this will require a two stage
process initially initializing with internal clock source, then settung up the WR connection by means of the WR routines de-
scribed below, then initializing again with the desired WR clock mode.

7.2.3. Functions for Use on Initialized Devices
All functions below can only be used after HH500_Initialize was successfully called.

int HH500_GetHardwareInfo (int devidx, char* model, char* partno, char* version);

arguments: devidx: device index 0..7
model: pointer to a buffer for at least 24 characters
partno: pointer to a buffer for at least 8 characters
version: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int HH500_GetFeatures (int devidx, int* features);

arguments: devidx: device index 0..7
features: pointer to a buffer for an integer (actually a bit pattern)

return value: =0 success
<0 error

Note: You do not really need this function. It is mainly for integration in PicoQuant system software such as SymPhoTime in order
to figure out in a standardized way what capabilities the device has. If you want it anyway, use the bit masks from
hh500defin.h to evaluate individual bits in the pattern.

int HH500_GetSerialNumber (int devidx, char* serial);

arguments: devidx: device index 0..7
serial: pointer to a buffer for at least 8 characters

return value: =0 success
<0 error

int HH500_GetBaseResolution (int devidx, double* resolution, int* binsteps);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the base resolution in ps
binsteps: pointer to an integer,

returns the number of allowed binning steps

return value: =0 success
<0 error

Note: The base resolution of a device is its best possible resolution as determinded by the hardware. It also corresponds to the
timing resolution in T2 mode. In T3 and Histogramming mode it is possible to “bin down” the resolution by means of
HH500_SetBinning. The value returned in binsteps is the number of permitted binning steps. The range of values you
can pass to HH500_SetBinning is then 0..binsteps-1.

Page 26

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_GetNumOfInputChannels (int devidx, int* nchannels);

arguments: devidx: device index 0..7
nchannels: pointer to an integer,

returns the number of installed input channels

return value: =0 success
<0 error

Note: The value returned in nchannels is the number of channels. The range of values you can pass to the library calls accept-
ing a channel number is then 0..nchannels-1. If here you obtain fewer channels than SMA input connectors your device
physically has then you probaly purchased only an economy model with a subset of channels enabled. An upgrade can in
this case still be ordered.

int HH500_GetNumOfModules (int devidx, int* nummod);

arguments: devidx: device index 0..7
nummod: pointer to an integer,

returns the number of installed modules

return value: =0 success
<0 error

Note: This routine is only an accessory for retrieval of hardware version details via HH500_GetModuleInfo which must be called
separately for each module. The value returned in nummod is the number of modules. The range of values you can pass to
HH500_GetModuleInfo is then 0..nummod-1.

int HH500_GetModuleInfo (int devidx, int modidx, int* modelcode, int* versioncode);

arguments: devidx: device index 0..7
modidx: module index 0..nummod-1 (see HH500_GetNumOfModules)
modelcode: pointer to an integer,

returns the model of the module identified by modidx
versioncode: pointer to an integer,

 returns the versioncode of the module identified by modidx

return value: =0 success
<0 error

Note: This routine is for retrieval of hardware version details and must be called separately for each module. Get the number of
modules via HH500_GetNumOfModules. You only need this information for support enquiries.

int HH500_GetDebugInfo(int devidx, char *debuginfo);

arguments: devidx: device index 0..7
debuginfo: pointer to a buffer for at least 65536 characters

return value: =0 success
<0 error

Note: Use this call to obtain debug information. Call it immediately after receiving an error code <0 from any library call or after de-
tecting a FLAG_SYSERROR from HH500_GetFlags. In case of FLAG_SYSERRORr please provide this information for sup-
port.

int HH500_SaveDebugDump(int devidx, char* filepath);

arguments: devidx: device index 0..7
filepath: pointer to a string holding the destination path including a

trailing path delimiter

return value: =0 success
<0 error

Page 27

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Note: Use this call to obtain and save hardware debug information. You can call it immediately after receiving an error code <0
from any library call. It is of particular value after detecting a FLAG_SYSERROR from HH500_GetFlags and in case of er-
rors in HH500_Initialize. Please provide the saved file(s) for support.

int HH500_SetSyncDiv (int devidx, int div);

arguments: devidx: device index 0..7
div: sync rate divider

(1, 2, 4, .., SYNCDIVMAX)

return value: =0 success
<0 error

Note: The sync divider must be used to keep the effective sync rate at values < 78 MHz. It should only be used with sync sources
of stable period. Using a larger divider than strictly necessary does not do great harm but it may result in slightly larger tim-
ing jitter. The readings obtained with HH500_GetCountRate are internally corrected for the divider setting and deliver the
external (undivided) rate. The sync divider should not be changed while a measurement is running, the recorded data will
then likely be corrupted.

int HH500_GetSyncFeatures(int devidx, unsigned* features);

arguments: devidx: device index 0..7
features: pointer to an unsigned integer receiving the features bit map

return value: =0 success
<0 error

Note: The features bit map must be interpreted by a bit-and with the bit masks HAS_ETR (this channel has an edge trigger) and
HAS_CFD (this channel has a constant fraction discriminator) as defined in hh500defin.h. The feature is present when the
result of the corresponding bit-and is >0.

int HH500_SetSyncTrgMode(int devidx, int mode);

arguments: devidx: device index 0..7
mode: trigger mode TRGMODE_ETR (edge trigger) = 0 or

TRGMODE_CFD (constant fraction discriminator) = 1

return value: =0 success
<0 error

Note: Dependent on the hardware model the input may not support both modes. You can call HH500_GetSyncFeatures in order
to determine the actual capabilities.

int HH500_SetSyncEdgeTrg(int devidx, int level, int edge);

arguments: devidx: device index 0..7
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: Dependent on the hardware model the sync input may not support this call. You can call HH500_GetSyncFeatures in or-
der to determine the actual input capabilities. Furthermore, the sync input must be in TRGMODE_ETR (see HH500_Set-
SyncTrgMode) in order to make this call. Otherwise it will report HH500_ERROR_WRONG_TRGMODE.

int HH500_SetSyncCFD(int devidx, int level, int zerocross);

arguments: devidx: device index 0..7
level: discriminator level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

Page 28

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

return value: =0 success
<0 error

Note: Dependent on the hardware model the sync input may not support this call. You can call HH500_GetSyncFeatures in or-
der to determine the actual input capabilities. Furthermore, the sync input must be in TRGMODE_CFD (see HH500_Set-
SyncTrgMode) in order to make this call. Otherwise it will report HH500_ERROR_WRONG_TRGMODE.

int HH500_SetSyncChannelOffset (int devidx, int value);

arguments: devidx: device index 0..7
value: sync timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the sync input. Actual resolution is the device’s base resolution.

int HH500_SetSyncChannelEnable (int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the sync channel

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: This is really only useful in T2 mode. Histogramming and T3 mode need an active sync signal.

int HH500_SetSyncDeadTime (int devidx, int on, int deadtime);

arguments: devidx: device index 0..7
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. An extended dead-time does
not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events occuring
within the extended dead-time from further processing. Note that when an extended dead-time is set then it will also affect
the count rate meter readings.

int HH500_GetInputFeatures(int devidx, int channel, unsigned* features);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1
features: pointer to an unsigned integer receiving the features bit map

return value: =0 success
<0 error

Note: The features bit map must be interpreted by a bit-and with the bit masks HAS_ETR (this channel has an edge trigger) and
HAS_CFD (this channel has a constant fraction discriminator) as defined in hh500defin.h. The feature is present when the
result of the corresponding bit-and is >0.

Page 29

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_SetInputTrgMode(int devidx, int channel, int mode);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
mode: trigger mode TRGMODE_ETR (edge trigger) = 0 or

TRGMODE_CFD (constant fraction discriminator) = 1

return value: =0 success
<0 error

Note: Dependent on the hardware model the input may not support both modes. You can call HH500_GetInputFeatures in or-
der to determine the actual capabilities.

int HH500_SetInputEdgeTrg(int devidx, int channel, int level, int edge);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
level: trigger level in mV TRGLVLMIN..TRGLVLMAX
edge: 0 = falling, 1 = rising

return value: =0 success
<0 error

Note: Dependent on the hardware model the input may not support this call. You can call HH500_GetInputFeatures in order to
determine the actual input capabilities. Furthermore, the input must be in TRGMODE_ETR (see HH500_SetInput-
TrgMode) in order to make this call. Otherwise it will report HH500_ERROR_WRONG_TRGMODE..

int HH500_SetInputCFD(int devidx, int channel, int level, int zerocross);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
level: discriminator level in mV CFDLVLMIN..CFDLVLMAX
zerocross: zero cross level in mV CFDZCMIN..CFDZCMAX

return value: =0 success
<0 error

Note: Dependent on the hardware model the input may not support this call. You can call HH500_GetInputFeatures in order to
determine the actual input capabilities. Furthermore, the input must be in TRGMODE_CFD (see HH500_SetInout-
TrgMode) in order to make this call. Otherwise it will report HH500_ERROR_WRONG_TRGMODE.

int HH500_SetInputChannelOffset (int devidx, int channel, int value);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
value: channel timing offset in ps

minimum = CHANOFFSMIN
maximum = CHANOFFSMAX

return value: =0 success
<0 error

Note: This is equivalent to changing the cable delay on the chosen input. Actual offset resolution is the device’s base resolution.
The maximum input channel index must correspond to nchannels-1 as obtained through HH500_GetNumOfInputChan-
nels. It is also possible to pass the channel number -1 and thereby make the setting for all channels simultaneously.

int HH500_SetInputChannelEnable (int devidx, int channel, int enable);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
enable: desired enable state of the input channel

0 = disabled
1 = enabled

Page 30

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

return value: =0 success
<0 error

Note: The maximum channel index must correspond to nchannels-1 as obtained through HH500_GetNumOfInputChannels.

int HH500_SetInputDeadTime (int devidx, int channel, int on, int deadtime);

arguments: devidx: device index 0..7
channel: input channel index 0..nchannels-1, or -1 for all channels
on: 0 = set minimal dead-time, 1 = activate extended dead-time
deadtime: extended dead-time in ps

minimum = EXTDEADMIN
maximum = EXTDEADMAX

return value: =0 success
<0 error

Note: This call is primarily intended for the suppression of afterpulsing artefacts of some detectors. An extended dead-time does
not prevent the TDC from measuring the next event and hence enter a new dead-time. It only suppresses events occuring
within the extended dead-time from further processing. When an extended dead-time is set for a channel then it will also af -
fect the corresponding count rate meter readings. Also note that the actual extended dead-time is only approximated to the
nearest step of the device’s base resolution. It is also possible to pass the channel number -1 and thereby make the setting
for all channels simultaneously.

int HH500_SetInputHysteresis (int devidx, int hystcode);

arguments: devidx: device index 0..7
hystcode: code for the hysteresis

0 = 3mV approx. (default)
1 = 35mV approx.

return value: =0 success
<0 error

Note: This call is intended for the suppression of noise or pulse shape artefacts of some detectors by setting a higher input hyster -
esis. Note that this setting affects all timing inputs (sync and channels) simultaneously.

int HH500_SetStopOverflow (int devidx, int stop_ovfl, unsigned int stopcount);

arguments: devidx: device index 0..7
stop_ofl: 0 = do not stop,

1 = do stop on overflow
stopcount: count level at which should be stopped

minimum = STOPCNTMIN
maximum = STOPCNTMAX

return value: =0 success
<0 error

Note: This setting determines if a histogram measurement will stop if any channel reaches the maximum set by stopcount. If
stop_ofl is 0 the measurement will continue but counts above STOPCNTMAX in any bin will be clipped.

int HH500_SetBinning (int devidx, int binning);

arguments: devidx: device index 0..7
binning: measurement binning code

minimum = 0 (smallest, i.e. base resolution)
maximum = binsteps-1 (see HH500_GetBaseresolution)

return value: =0 success
<0 error

Note: Binning only applies in Histogramming and T3 Mode. The binning code corresponds to repeated doubling, i.e.

Page 31

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

0 = 1x base resolution,
1 = 2x base resolution,
2 = 4x base resolution,
3 = 8x base resolution, and so on up to MAXBINSTEPS

int HH500_SetOffset (int devidx, int offset);

arguments: devidx: device index 0..7
offset: histogram time offset in ns

minimum = OFFSETMIN
maximum = OFFSETMAX

return value: =0 success
<0 error

Note: This offset only applies in Histogramming and T3 mode. It affects only the difference between stop and start before it is put
into the T3 record or is used to increment the corresponding histogram bin. It is intended for situations where the range of
the histogram is not long enough to capture “late” data. By means of the offset the “window of view” is shifted to a later
range. This is not the same as changing or compensating cable delays. If the latter is desired please use HH500_SetSync-
ChannelOffset and/or HH500_SetInputChannelOffset.

int HH500_SetHistoLen (int devidx, int lencode, int* actuallen);

arguments: devidx: device index 0..7
lencode: histogram length code

minimum = 0
maximum = MAXLENCODE (default = DFLTLENCODE)

actuallen: pointer to an integer,
returns the current length (time bin count) of histograms
which is calculated as 1024*(lencode^2)

return value: =0 success
<0 error

Note: This sets the number of bins of the collected histograms. Only meaningful in histogramming mode. The histogram length ob-
tained with DFLTLENCODE is 65536 which is the default after initialization i.e. if HH500_SetHistoLen is not called.

int HH500_ClearHistMem (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This clears the histogram memory of all channels. Only meaningful in histogramming mode.

int HH500_SetMeasControl (int devidx, int meascontrol, int startedge, int stopedge);

arguments: devidx: device index 0..7
meascontrol: measurement control code

0 = MEASCTRL_SINGLESHOT_CTC
1 = MEASCTRL_C1_GATED
2 = MEASCTRL_C1_START_CTC_STOP
3 = MEASCTRL_C1_START_C2_STOP
4 = MEASCTRL_WR_M2S
5 = MEASCTRL_WR_S2M
6 = MEASCTRL_SW_START_SW_STOP

in continuous histogramming mode only:
7 = MEASCTRL_CONT_C1_GATED
8 = MEASCTRL_CONT_C1_START_CTC_STOP
9 = MEASCTRL_CONT_CTC_RESTART 9

startedge: edge selection code
0 = falling
1 = rising

Page 32

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

stopedge: edge selection code
0 = falling
1 = rising

return value: =0 success
<0 error

Note: This sets the measurement control mode and must be called before starting a measurement. The default after initialization
(if this function is not called) is 0, i.e. CTC controlled acquisition time. The modes 1..9 allow hardware triggered measure-
ments through LVTTL signals at the control port or through White Rabbit. Note that this needs custom software. For a
guideline please see the demo set for the C language. MEASCTRL_SW_START_SW_STOP permits controlling the duration of
measurements purely by software and thereby overcoming the limit of 100 h imposed by the hardware CTC. Note that in this
case the results of HH500_GetElapsedMeasTime will be less accurate. The parameters startedge and stopedge are
relevant only for the control codes 1 through 3 and 7 through 8.

int HH500_SetTriggerOutput(int devidx, int period);

arguments: devidx: device index 0..7
period: in units of 100ns, TRIGOUTMIN..TRIGOUTMAX, 0 = off

return value: =0 success
<0 error

Note: This can be used to set the period of the programmable trigger output. The period 0 switches it off. Observe laser safety
when using this feature for triggering a laser.

int HH500_StartMeas (int devidx, int tacq);

arguments: devidx: device index 0..7
tacq: acquisition time in milliseconds

minimum = ACQTMIN
maximum = ACQTMAX

return value: =0 success
<0 error

Note: If beforehand MEASCTRL_SW_START_SW_STOP was set via HH500_SetMeasControl, the parameter tacq will be ignored
and the measurement will run until HH500_StopMeas is called. This can be used to overcome the limit of 100 h imposed by
the hardware CTC. However, the results of HH500_GetElapsedMeasTime will in this case be less accurate as it can only
use the timers of the operating system. Similarly, HH500_StartMeas will behave differently if beforehand
MEASCTRL_C1_xxx or MEASCTRL_WR_M2S or MEASCTRL_WR_S2M were set. Calling HH500_StartMeas at the device to
be hardware- or remote-started will then not actually start a measurement but only arm the device to wait for hardware/re -
mote start. In these cases the user code must subsequently poll HH500_CTCStatus for status==0 to learn whether the
measurement has actually started, before it can begin polling for status==1 to learn whether the measurement has ended.

int HH500_StopMeas (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This call can be used to force a stop before the acquisition time expires. For clean-up purposes must in any case be called
after a measurement, also if the measurement has expired on its own.

int HH500_CTCStatus (int devidx, int* ctcstatus);

arguments: devidx: device index 0..7
ctcstatus pointer to an integer,

returns the acquisition time state
0 = acquisition time still running
1 = acquisition time has ended

return value: =0 success
<0 error

Page 33

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Note: This call can be used to check if a measurement has expired or is still running.

int HH500_GetHistogram (int devidx, unsigned int *chcount, int channel);

arguments: devidx: device index 0..7
chcount pointer to an array of at least actuallen dwords (32bit)

where the histogram data can be stored
channel: input channel index 0..nchannels-1

return value: =0 success
<0 error

Note: The histogram buffer size must correspond to the value obtained through HH500_SetHistoLen.
The maximum input channel index must correspond to nchannels-1 as obtained through HH500_GetNumOfInputChan-
nels.
Note that HH500_GetHistogram cannot be used with the shortest two histogram lengths of 1024 and 2048 bins. You need
to use HH500_GetAllHistograms in this case. For speed reasons this would be preferred anyhow.

int HH500_GetAllHistograms(int devidx, unsigned int *chcount);

arguments: devidx: device index 0..7
chcount: buffer for a multidimensional array of the form

 unsigned int histograms[num_channels][histolen]

return value: =0 success
<0 error

Note: This can be used as a replacement for multiple calls to HH500_GetHistogram when all histograms are to be retrieved in
the most time-efficient way. The multidimensional array receiving the data must be shaped according to the number of input
channels of the device and the chosen histogram length. Written in C notation this would be something like
unsigned int histobuf[numinputchannels][numhistogrambins].

int HH500_GetResolution (int devidx, double* resolution);

arguments: devidx: device index 0..7
resolution: pointer to a double precision float (64 bit)

returns the resolution at the current binning
(histogram bin width) in ps

return value: =0 success
<0 error

Note: This is not meaningful in T2 mode.

int HH500_GetSyncRate (int devidx, int* syncrate);

arguments: devidx: device index 0..7
syncrate: pointer to an integer

returns the current sync rate

return value: =0 success
<0 error

Note: Allow at least 100 ms after HH500_Initialize or HH500_SetSyncDivider to get a stable rate meter reading. Similarly,
wait at least 100 ms to get a new reading. This is the gate time of the counter. This call is intended only for count rate in-
formation during instrument setup. It is not suitable for obtaining reliable time traces as the operating system’s scheduling
will not allow the call to be made at sufficiently precise times.

Page 34

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_GetCountRate (int devidx, int channel, int* cntrate);

arguments: devidx: device index 0..7
channel: number of the input channel 0..nchannels-1
cntrate: pointer to an integer

returns the current count rate of this input channel

return value: =0 success
<0 error

Note: Allow at least 100 ms after HH500_Initialize to get a stable rate meter reading. Similarly, wait at least 100 ms to get a
new reading. This is the gate time of the counters. The maximum input channel index must correspond to nchannels-1 as
obtained through HH500_GetNumOfInputChannels. This call is intended only for count rate information during instrument
setup. It is not suitable for obtaining reliable time traces as the operating system’s scheduling will not allow the call to be
made at sufficiently precise times.

int HH500_GetAllCountRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the input rates

return value: =0 success
<0 error

Note: This can be used as replacement of HH500_GetSyncRate and HH500_GetCountRate when all rates need to be retrieved
in an efficient manner. Make sure that the array cntrates is large enough for the number of input channels your device
has. The safest approach is to dimension it for MAXINPCHAN. This call is intended only for count rate information during in-
strument setup. It is not suitable for obtaining reliable time traces as the operating system’s scheduling will not allow the call
to be made at sufficiently precise times.

int HH500_GetFlags (int devidx, int* flags);

arguments: devidx: device index 0..7
flags: pointer to an integer

returns the current status flags (a bit pattern)

return value: =0 success
<0 error

Note: Use the predefined bit mask values in hh500defin.h (e.g. FLAG_OVERFLOW) to extract individual bits through a bitwise AND.
The possible flags are:

FLAG_OVERFLOW 0x0001
This flag occurs in histo mode only. It indicates that a histogram measurement has reached the maximum count as specified
via HH500_SetStopOverflow.

FLAG_FIFOFULL 0x0002
This flag occurs in TTTR mode only. It indicates that the main USB data FIFO has run full. The measurement will then have
to be aborted as data integrity is no longer maintained.

FLAG_SYNC_LOST 0x0004
This flag may occur in T3 mode and in histo mode. It indicates that the sync signal has been lost which in this case is critial
as the function of T3 mode and histo mode relies on an uninterruptd sync signal.

FLAG_REF_LOST 0x0008
This flag will occur when the HydraHarp is programmed to use an external reference clock and this reference clock is lost .

FLAG_SYSERROR 0x0010
This flag indicates an error of the hardware or internal software. The user should in this case call the library routine GetDe -
bugInfo and provide the result to PicoQuant support.

FLAG_ACTIVE 0x0020
This flag indicates that a measurement is running.

FLAG_CNTS_DROPPED 0x0040
This flag indicates that counts were dropped at the first level FIFO following the TDC of an input channel. This occurs typic-
ally only at extremely high count rates. Dependent on the application this may or may not be considered critical.

Page 35

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_GetElapsedMeasTime (int devidx, double* elapsed);

arguments: devidx: device index 0..7
elapsed: pointer to a double precision float (64 bit)

returns the elapsed measurement time in ms

return value: =0 success
<0 error

Note: This can be used to obtain the elapsed time of a measurement. This relates to the current measurement when still running
or to the previous measurement when already finished. Note that when MEASCTRL_SW_START_SW_STOP is used (con-
trolling the duration of meaurements purely by software) the results of HH500_GetElapsedMeasTime will be less accurate.

int HH500_GetStartTime(int devidx, unsigned int* timedw2, unsigned int* timedw1,
 unsigned int* timedw0);

arguments: devidx: device index 0..7
timedw2: most significant dword of the time value
timedw1: 2nd m.s. dword of the time value
timedw0: least significant dword of the time value in ps

return value: =0 success
<0 error

Note: This can be used to retrieve the start time of a measurement with high resolution. It relates always to the start of the most
recent measurement, be it completed or only just started. The result is to be interpreted in the sense of a unix time, i.e.
elapsed picoseconds since January 1st 1970 00:00:00 UTC (Universal Time). Note that the actual resolution is the device’s
base resolution. Actual accuracy depends on the chosen time base, e.g., a White Rabbit grandmaster can be very accurate.
With less accurate clocks the high resolution result can still be meaningful in a relative sense, e.g. between two devices syn -
chronized over White Rabbit. With internal clocking the accuracy only reflects that of the PC clock. The retrieval via 3
dwords is due to the limited range of all other standard number formats.

int HH500_GetWarnings (int devidx, int* warnings);

arguments: devidx: device index 0..7
warnings pointer to an integer

returns warnings, bitwise encoded (see hh500defin.h)

return value: =0 success
<0 error

Note: Prior to this call you must call either HH500_GetAllCountRates or call HH500_GetSyncRate and HH500_GetCout-
Rate for all channels. Otherwise the received warnings will at least partially not be meaningful.

int HH500_GetWarningsText (int devidx, char* text, int warnings);

arguments: devidx: device index 0..7
text: pointer to a buffer for at least 16384 characters

warnings: integer bit-field obtained from HH500_GetWarnings

return value: =0 success
<0 error

Note: This can be used to translate warnings obtained by HH500_GetWarnings to a human-readable text.

int HH500_GetSyncPeriod (int devidx, double* period);

arguments: devidx: device index 0..7
period: pointer to a double precision float (64 bit)

returning the sync period in seconds

return value: =0 success
<0 error

Page 36

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Note: This call only gives meaningful results while a measurement is running and after two sync periods have elapsed.
The return value is undefined in all other cases. Resolution is that of the device’s base resolution. Accuracy is determined by
single shot jitter and clock stability.

7.2.4. Special Functions for Continuous Histogramming Mode
The HydraHarp 500 supports continuous gapless recording and streaming of short term histograms. The fol-
lowing routines can be used for this.

int HH500_GetContModeBlock (int devidx, void* blockbuffer, int* nbytesreceived);

arguments: devidx: device index 0..7
blockbuffer: pointer to a buffer where the data block will be stored
nbytesreceived: pointer to an integer,

returns the number of bytes received

return value: =0 success
<0 error

Note: Required buffer size and data structure depends on the number of active input channels and histogram bins.
Allocate MAXCONTMODEBUFLEN bytes to be on the safe side.

int HH500_DissectContModeBlkHdr (int devidx, void* blockbuffer, unsigned int* blocknum,
 unsigned int* histlen, unsigned int* nhistograms, unsigned int* histchans, unsigned int* flags,
 unsigned long long* starttime, unsigned long long* duration, unsigned int* markercounts);

arguments: devidx: device index 0..7
blockbuffer: IN pointer to a buffer with the raw data block to dissect

blocknum: OUT counting up from 1, can be used for sanity check
histlen: OUT number of histogram bins as set by HH500_SetHistoLen
nhistograms: OUT number of histograms in this block
histchans: OUT array[MAXINPCHAN] indicating the corresponding channels
flags: OUT bit0: stop on overflow, bit1: contmode memory full
starttime: OUT start time of this block of histograms in nanosec
duration: OUT histogram duration in nanosec
markercounts: OUT array[4], count of of markers 0..3 within this time

return value: =0 success
<0 error

Note: The idea is to pass in the block buffer filled by HH500_GetContModeBlock and obtain the individual block header items
without needing to know the block header structure. See the demo contmode_easy for how to do this.

int HH500_DissectContModeBlkHdr (int devidx, void* blockbuffer, unsigned int histindex,
unsigned int* channel, unsigned long long* histosum, unsigned int* histogram);

arguments: devidx: device index 0..7
blockbuffer: IN pointer to a buffer with the raw data block to dissect

histindex: IN index of histogram to extract
channel: OUT input channel this histogram came from
histosum: OUT sum of counts in this histogram
histogram: OUT histogram as array[histlen] with histlen from header

return value: =0 success
<0 error

Note: The index of the histogram to extract must be in the range 0..nhistograms-1 from the block header. See the demo
contmode_easy for how to use this call.

Page 37

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7.2.5. Special Functions for TTTR Mode (Time Tagging)

int HH500_ReadFiFo (int devidx, unsigned int* buffer, int* nactual);

arguments: devidx: device index 0..7
buffer: pointer to an array of TTREADMAX dwords (32bit)

where the retrieved TTTR data will be stored
nactual: pointer to an integer

returns the number of TTTR records received

return value: =0 success
<0 error

Note: The call will return typically after 10 ms and even less if no more data could be fetched. The call may occasionally take
longer due to USB overhead and operating system latencies, especially when the PC or the USB connection is slow. Buffer
must not be accessed until the call returns. Note that even when HH500_CTCStatus reports expiration of the measurement
time there may still be data in the FIFO. In order to fully retrieve this residue it may be necessary to call HH500_ReadFiFo
a few times more.

int HH500_SetMarkerEdges (int devidx, int en1, int en2, int en3, int en4);

arguments: devidx: device index 0..7
me<n>: active edge of marker signal <n>,

0 = falling,
1 = rising

return value: =0 success
<0 error

Note: This can be used to change the active edge on which the external LVTTL signals connected to the marker inputs are trigger -
ing. Only meaningful in TTTR mode.

int HH500_SetMarkerEnable (int devidx, int en0, int en1, int en2, int en3);

arguments: devidx: device index 0..7
en<n>: desired enable state of marker signal <n>,

0 = disabled,
1 = enabled

return value: =0 success
<0 error

Note: This can be used to enable or disable the external LVTTL marker inputs. Only meaningful in TTTR mode.

int HH500_SetMarkerHoldoffTime (int devidx, int holdofftime);

arguments: devidx: device index 0..7
holdofftime: hold-off time in ns (0..HOLDOFFMAX)

return value: =0 success
<0 error

Note: This setting is meaningful in TTTR mode only. It is not normally required but it can be used to deal with glitches on the
marker lines. Markers following a previous marker within the hold-off time will be suppressed. Note that the actual hold-off
time is only approximated to about ±20ns.

int HH500_SetOflCompression (int devidx, int holtime);

arguments: devidx: device index 0..7
holdtime: hold time in ms (0..HOLDTIMEMAX)

return value: =0 success
<0 error

Page 38

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

Note: This setting is meaningful in TTTR mode only. It is not normally required but it can be useful when data rates are very low
and there are more time tag format overflows than photons. The hardware will then count overflows and only transfer them
to the FIFO when holdtime has elapsed. The default value is 2 ms. If you are implementing a real-time preview and data
rates are very low you may observe “stutter” when holdtime is chosen too large because then there is nothing coming out
of the FIFO for longer times. Indeed this is aggravated by the fact that the FIFO has a transfer granularity of 16 records.
Supposing a data stream without any regular event records (i.e. only overflows) this means that effectively there will be
transfers only every 16*holdtime ms. Whenever there is a true event record arriving (photons or markers) the previously
accumulated overflows will instantly be transferred. This may be the case merely due to dark counts, so the “stutter” would
rarely occur. In any case you can switch overflow compression off by setting holdtime 0.

7.2.6. Special Functions for TTTR Mode with Event Filtering
The HydraHarp 500 supports event filtering in hardware (see section Fehler: Verweis nicht gefunden). This
helps to reduce USB bus load in TTTR mode by eliminating photon events that carry no information of in-
terest as typically found in many coincidence correlation experiments. Please read the HydraHarp 500 man-
ual for details. The following library calls can be used to configure and activate the event filters.

int HH500_SetGroupEventFilter(int devidx, int groupidx, int timerange, int matchcnt,
 int inverse, int usechannels, int passchannels);

arguments: devidx: device index 0..7
groupidx: index of the group of input channels

(GROUPIDXMIN..GROUPIDXMAX)
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

usechannels: integer bitfield with bit0 = leftmost input channel
unused bits must be 0
bit value 1 = use this channel
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel
unused bits must be 0
bit value 1 = unconditionally pass this channel
bit value 0 = pass this channel subject to filter condition

return value: =0 success
<0 error

Note: This sets the parameters for one Group Filter implemented in the local FPGA processing that group of input channels. Each
Group Filter can act only on the input channels within its own group and never on the sync channel. The value timerange
determines the time window the filter is acting on. Note that timerange acts both ways in time so that the window width is
actually 2 * timerange. The parameter matchcnt specifies how many other events must fall into the chosen time win-
dow for the filter condition to act on the event at hand. The parameter inverse inverts the filter action, i.e. when the filter
would regularly have eliminated an event it will then keep it and vice versa. For the typical case, let it be not inverted. Then,
if matchcnt is 1 we will obtain a simple ‘singles filter’. This is the most straight forward and most useful filter in typical
quantum optics experiments. It will suppress all events that do not have at least one coincident event within the chosen time
range, be this in the same or any other channel marked as ‘use’ in this group. The bitfield passchannels is used to indicate
if a channel is to be passed through the filter unconditionally, whether it is marked as ‘use’ or not. The events on a channel
that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, provided the filter is enabled. The parameter settings are
irrelevant as long as the filter is not enabled. The output from the Group Filters is fed to the Main Filter. The overall filtering
result depends on their combined action. Only the Main Filter can act on all channels of the HydraHarp 500 device including
the sync channel. It is usually sufficient and easier to use the Main Filter alone. The only reasons for using the Group Filters
are early data reduction, so as to not overload the Main Filter, and the possible need for more complex filters, e.g. with dif -
ferent time ranges.

int HH500_EnableGroupEventFilter(int devidx, int rowidx, int enable);

arguments: devidx: device index 0..7
groupidx: index of the group of input channels

(GROUPDXMIN..GROUPIDXMAX)
enable: desired enable state of the filter

0 = disabled
1 = enabled

Page 39

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events will be filtered
out according to the parameters set with HH500_SetGroupEventFilter.

int HH500_SetMainEventFilterParams(int devidx, int timerange, int matchcnt, int inverse);

arguments: devidx: device index 0..7
timerange: time distance in ps to other events to meet filter condition

(TIMERANGEMIN..TIMERANGEMAX)
matchcnt: number of other events needed to meet filter condition

(MATCHCNTMIN..MATCHCNTMAX)
inverse: set regular or inverse filter logic

0 = regular,
1 = inverse

return value: =0 success
<0 error

Note: This sets the parameters for the Main Filter implemented in the main FPGA processing the aggregated events arriving from
the input channel groups in the timing module FPGAs. The Main Filter can therefore act on all channels of the HydraHarp
500 device including the sync channel. The value timerange determines the time window the filter is acting on. Note that
timerange acts both ways in time so that the window width is actually 2 * timerange. The parameter matchcnt spe-
cifies how many other events must fall into the chosen time window for the filter condition to act on the event at hand. The
parameter inverse inverts the filter action, i.e. when the filter would regularly have eliminated an event it will then keep it
and vice versa. For the typical case, let it be not inverted. Then, if matchcnt is 1 we obtain a simple ‘singles filter’. This is
the most straight forward and most useful filter in typical quantum optics experiments. It will suppress all events that do not
have at least one coincident event within the chosen time range, be this in the same or any other channel. In order to mark
individual channel as ‘use’ and/or ‘pass’ please use HH500_SetMainEventFilterChannels.The parameter settings are
irrelevant as long as the filter is not enabled. Note that the Main Filter only receives event data that passes the Group Filters
(if they are enabled). The overall filtering result therefore depends on the combined action of both filters. It is usually suffi -
cient and easier to use the Main Filter alone. The only reasons for using the Group Filters are early data reduction, so as to
not overload the Main Filter, and the possible need for more complex filters, e.g. with different time ranges.

int HH500_SetMainEventFilterChannels(int devidx, int blockidx, int usechannels, int passchannels);

arguments: devidx: device index 0..7
blockidx: index of the block of input channels

(BLOCKIDXMIN..BLOCKIDXMAX)
usechannels: integer bitfield with bit0 = leftmost input channel

if blockindex is 0 then bit8 = sync channel
unused higher bits must be 0

bit value 1 = use this channel,
bit value 0 = ignore this channel

passchannels: integer bitfield with bit0 = leftmost input channel
if rowindex is 0 then bit8 = sync channel
unused higher bits must be 0

bit value 1 = unconditionally pass this channel,
bit value 0 = pass this channel subject to filter condition

return value: =0 success
<0 error

Note: This selects the Main Filter channels for one block of 8 input channels where blockindex 0 holds channels 1..8 and blockin-
dex 1 holds channels 9..16. Note that this is different and independent from input groups and the groupindex used to pro-
gram the Group Filters. The bitfield usechannels is used to to indicate if a channel is to be used by the filter. The bitfield
passchannels is used to to indicate if a channel is to be passed through the filter unconditionally, whether it is marked as
‘use’ or not. The events on a channel that is marked neither as ‘use’ nor as ‘pass’ will not pass the filter, provided the filter is
enabled. The settings for the sync channel are meaningful only in T2 mode and will be ignored in T3 mode. The channel set -
tings are irrelevant as long as the filter is not enabled. The Main Filter receives its input from the Group Filters. If the Group
Filters are enabled, the overall filtering result therefore depends on the combined action of both filters. Only the Main Filter
can act on all channels of the HydraHarp 500 device including the sync channel. It is usually sufficient and easier to use the
Main Filter alone. The only reasons for using the Group Filter(s) are early data reduction, so as to not overload the Main Fil-
ter, and the possible need for more complex filters, e.g. with different time ranges.

Page 40

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_EnableMainEventFilter(int devidx, int enable);

arguments: devidx: device index 0..7
enable: desired enable state of the filter

0 = disabled
1 = enabled

return value: =0 success
<0 error

Note: When the filter is disabled all events will pass. This is the default after initialization. When it is enabled, events may be
filtered out according to the parameters set by way of HH500_SetMainEventFilterParams and HH500_SetMainEv-
entFilterChannels. Note that the Main Filter only receives event data that passes the Group Filters (if they are enabled).
The overall filtering result therefore depends on the combined action of both filters. It is usually sufficient and easier to use
the Main Filter alone. The only reasons for using the Group Filters are early data reduction, so as to not overload the Main
Filter, and the possible need for more complex filters, e.g. with different time ranges.

int HH500_SetFilterTestMode(int devidx, int testmode);

arguments: devidx: device index 0..7
testmode: desired mode of the filter

0 = regular operation
1 = testmode

return value: =0 success
<0 error

Note: One important purpose of the event filters is to reduce USB load. When the input data rates are higher than the USB band-
with, there will at some point be a FIFO overrun. It may under such conditions be difficult to empirically optimize the filter
settings. Setting filter test mode disables all data transfers into the FIFO so that a test measurement can be run without in -
terruption by a FIFO overrun. The library routines HH500_GetGroupFilteredRates and HH500_GetMainFilt-
eredRates can then be used to monitor the count rates after the Group Filters and after the Main Filter. When the filtering
effect is satisfactory the test mode can be switched off again to perform the regular measurement.

int HH500_GetGroupFilteredRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates after the Group Filters before entering the Main Filter. A measurement must be running to
obtain valid results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the
array cntrates is large enough for the number of input channels your device has. The safest approach is to dimension it
for MAXINPCHAN.

int HH500_GetMainFilteredRates(int devidx, int* syncrate, int* cntrates);

arguments: devidx: device index 0..7
syncrate: pointer to an integer variable receiving the sync rate
cntrates: pointer to an array of integer variables of the form

 int cntrates[num_channels] receiving the count rates

return value: =0 success
<0 error

Note: This call retrieves the count rates after the Main Filter before entering the FIFO. A measurement must be running to obtain

valid results. Allow at least 100 ms to get a new reading. This is the gate time of the rate counters. Make sure that the
array cntrates is large enough for the number of input channels your device has. The safest ap-
proach is to dimension it for MAXINPCHAN.

Page 41

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7.2.7. Special Functions for White Rabbit

int HH500_WRabbitGetMAC (int devidx, unsigned char* mac_addr);

arguments: devidx: device index 0..7
mac_addr: pointer to an array of six bytes to receive the MAC address

return value: =0 success
<0 error

Note: The MAC address must be unique, at least with in the network you are using.

int HH500_WRabbitSetMAC (int devidx, unsigned char* mac_addr);

arguments: devidx: device index 0..7
mac_addr: pointer to an array of six bytes holding the MAC address

return value: =0 success
<0 error

Note: The MAC address must be unique, at least with in the network you are using.

int HH500_WRabbitGetInitScript (int devidx, char* initscript);

arguments: devidx: device index 0..7
initscript: pointer to buffer for at least 256 characters

return value: =0 success
<0 error

Note: This can be used to retrieve the WR initialization script (if any) from EEPROM. Lines are separated by newline characters.
For details on script syntax etc. see the HydraHarp 500 manual and the White Rabbit documentation.

int HH500_WRabbitSetInitScript(int devidx, char* initscript);

arguments: devidx: device index 0..7
initscript: pointer to buffer with init script, max 256 characters

return value: =0 success
<0 error

Note: This can be used to place a WR initialization script in device EEPROM. Lines are separated by newline characters.
For details on script syntax etc. see the HydraHarp 500 manual and the White Rabbit documentation.

int HH500_WRabbitGetSFPData(int devidx, char* sfpnames, int* dTxs, int* dRxs, int* alphas);

arguments: devidx: device index 0..7
sfpnames: pointer to character array of the form: char sfpnames[4][20]
dTxs: pointer to integer array of the form: int dTxs[4]
dRxs: pointer to integer array of the form: int dRxs[4]
alphas: pointer to integer array of the form: int alphas[4]

return value: =0 success
<0 error

Note: This can be used to retrieve the SFP module calibration data (if any) from EEPROM.
For details on SFP module calibration see the HydraHarp 500 manual and the White Rabbit documentation.

Page 42

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_WRabbitSetSFPData(int devidx, char* sfpnames, int* dTxs, int* dRxs, int* alphas);

arguments: devidx: device index 0..7
sfpnames: pointer to character array of the form: char sfpnames[4][20]
dTxs: pointer to integer array of the form: int dTxs[4]
dRxs: pointer to integer array of the form: int dRxs[4]
alphas: pointer to integer array of the form: int alphas[4]

return value: =0 success
<0 error

Note: This can be used to place the SFP module calibration data in EEPROM.
For details on SFP module calibration see the HydraHarp 500 manual and the White Rabbit documentation.

int HH500_WRabbitInitLink(int devidx, int link_on);

arguments: devidx: device index 0..7
link_on: 0 = off, 1 = on

return value: =0 success
<0 error

Note: This can be used to switch the WR link on and off. For details on WR link setup see the HydraHarp 500 manual and the
White Rabbit documentation.

int HH500_WRabbitSetMode(int devidx, int bootfromscript, int reinit_with_mode, int mode);

arguments: devidx: device index 0..7
bootfromscript: boot from script in EEPROM, 0 = yes, 1 = no
reinit_with_mode: 0 = probe if previous mode set is completed

1 = re-initialize with new mode
mode: 0 = off, 1 = Slave, 2 = Master, 3 = Grandmaster

return value: =0 success
<0 error

Note: This can be used to make the WR core boot from the init script in EEPROM. It can also be used to select the WR mode and
probe for completion. For details on WR link setup see the HydraHarp 500 manual and the White Rabbit documentation.

int HH500_WRabbitSetTime(int devidx, unsigned int timehidw, unsigned int timelodw);

arguments: devidx: device index 0..7
timehidw: unix time in sec, most significant dword
timelodw: unix time in sec, least significant dword

return value: =0 success
<0 error

Note: This can be used to set the current UTC time of a HydraHarp’s WR core configured as WR master. If a slave is connected it
will be set to the same time. For details on WR time handling see the White Rabbit documentation.

int HH500_WRabbitGetTime(int devidx, unsigned int* timehidw, unsigned int* timelodw,
 unsigned int* subsec16ns);

arguments: devidx: device index 0..7
timehidw: unix time in sec, most significant dword
timelodw: unix time in sec, least significant dword
subsec16ns: unix time sub-seconds in steps of 16 ns

return value: =0 success
<0 error

Note: This can be used to retrieve the current UTC time of a HydraHarp’s WR core. For details on WR time handling see the White
Rabbit documentation.

Page 43

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_WRabbitGetStatus(int devidx, int* wrstatus);

arguments: devidx: device index 0..7
wrstatus: pointer to an integer receiving the status

return value: =0 success
<0 error

Note: The status must be interpreted as a bit field. Use the bit masks WR_STATUS_XXX as defined in hh500defin.h. For details
on WR status see the White Rabbit documentation.

int HH500_WRabbitGetTermOutput(int devidx, char* buffer, int* nchar);

arguments: devidx: device index 0..7
buffer: pointer to a text buffer of at least 513 characters
nchar: pointer to an integer receiving the actual text length

return value: =0 success
<0 error

Note: When the HydraHarp’s WR core has received the command gui (should be the last line of the init script) it sends terminal
output describing its state. This routine can then be used to retrieve that terminal output as a null terminated string. This
needs to be done repeatedly. The output will contain escape sequences for control of text color, screen refresh, etc. In order
to present it correctly these escape sequences must be interpreted and translated to the corresponding control mechanisms
of the chosen display scheme. To take care of this the data can be sent to a terminal emulator. Note that this is read-only.
There is currently no way of injecting commands to the WR core’s console prompt.

7.2.8. Special Functions for the External FPGA Interface

The functions in this category are provided for use with the External FPGA Interface (EFI) of the HydraHarp
500. For details on how to work with the EFI please see the separate manual on the topic.

int HH500_ExtFPGAInitLink (int devidx, int linknumber, int on);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be initialized
on: 0 = off, 1 = EFI REAR, 2 = EFI SFP

return value: =0 success
<0 error

Note: Sets the state of a link to the external FPGA. The number of usable links depends on the configuration of the hardware in
use. Currently EFI REAR can only be used with the MultiHarp 160, the current models of the HydraHarp 500 only support
EFI SFP. Using EFI SFP only link zero can be used.

int HH500_ExtFPGAGetLinkStatus (int devidx, int linknumber, unsigned int* status);

arguments: devidx: device index 0..7
linknumber: index 0..8 of the link to be queried
status: pointer to unsigned int buffer to receive the status

return value: =0 success
<0 error

Note: The number of usable links depends on the configuration of the hadware in use. The status is reported for each link inde-
pendently. The meaning of the status is dependent on the external FPGA and is further defined in the EFI programming
guide.

Page 44

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

int HH500_ExtFPGASetMode (int devidx, int mode, int loopback);

arguments: devidx: device index 0..7
mode: stream mode code to be set, see hh500defin.h
loopback: loopback mode code to be set, see hh500defin.h

return value: =0 success
<0 error

Note: For details on the meaning of the mode and loopback values see the EFI programming guide.

int HH500_ExtFPGAResetStreamFifos (int devidx);

arguments: devidx: device index 0..7

return value: =0 success
<0 error

Note: This function should typically be called after each call of HH500_Initialize. For details see the EFI programming guide.

int HH500_ExtFPGAUserCommand (int devidx, int write, unsigned int addr, unsigned int* data);

arguments: devidx: device index 0..7
write: 0 = read, 1 = write
addr: an “address” for the data in the external FPGA
data: pointer to location of data to write or to receive

return value: =0 success
<0 error

Note: This function is provided to allow data transfer to and from the external FPGA. The “address” may be understood as a com-
mand code associated with the data. The meaning of such user commands is specific to the custom EFI design and must
be implemented there in order to work here at the software level. The primary objective is to facilitate control mechanisms
but data transfer is also possible, albeit with limited speed.

Page 45

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

7.3. Warnings
The following is related to the warnings (possibly) generated by the library routine HH500_GetWarnings.
The mechanism and warning criteria are the same as those used in the regular HydraHarp software and de-
pend on the current count rates and the current measurement settings (see section 5.4).

Note that the software can detect only a subset of all possible error conditions. It is therefore not safe to as-
sume “all is right” just by obtaining no warning. It is also necessary that HH500_GetSyncrate and
HH500_GetCoutrate has been called (the latter for all channels) before HH500_GetWarnings is called.

The warnings are to some extent dependent on the current measurement mode. Not all warnings will occur in
all measurement modes. Also, count rate limits for a specific warning may be different in different modes. The
following table lists the possible warnings in the three measurement modes and gives some explanation as to
their possible cause and consequences.

Warning Histo Modes T2 Mode T3 Mode

WARNING_SYNC_RATE_ZERO

No pulses are detected at the sync input. In histogramming
and T3 mode this is crucial and the measurement will not
work without this signal.

√ √

WARNING_SYNC_RATE_VERY_LOW

The detected pulse rate at the sync input is below 100 Hz and
cannot be determined accurately. Other warnings may not be
reliable under this condition.

√ √

WARNING_SYNC_RATE_TOO_HIGH

The pulse rate at the sync input (after the divider) is higher
than 82 MHz. This is close to the sustainable front end speed.
Sync events may be lost above 85 MHz.

T2 mode is normally intended to be used without a fast sync
signal and without a divider. If you see this warning in T2
mode you may accidentally have connected a fast laser sync.

√ √ √

WARNING_INPT_RATE_ZERO

No counts are detected at any of the input channels. In histo-
gramming and T3 mode these are the photon event channels
and the measurement will yield nothing. You might sporadic-
ally see this warning if your detector has a very low dark
count rate and is blocked by a shutter. In that case you may
want to disable this warning.

√ √ √

WARNING_INPT_RATE_TOO_HIGH

The overall pulse rate at the input channels is higher than 85
MHz (USB 3.0 connection) or higher than 9 MHz (USB 2.0
connection). This is close to the throughput limit of the present
USB connection. The measurement will likely lead to a FIFO
overrun. There are some rare measurement scenarios where
this condition is expected and the warning can be disabled.
Examples are measurements where the FIFO can absorb all
data of interest before it overflows.

√ √ √

Page 46

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

WARNING_INPT_RATE_RATIO

This warning is issued in histogramming and T3 mode when
the rate at any input channel is higher than 5% of the sync
rate. This is the classical pile-up criterion. It will lead to notice-
able dead-time artefacts. There are rare measurement scen-
arios where this condition is expected and the warning can be
disabled. Examples are antibunching measurements or rapid-
FLIM where pile-up is either tolerated or corrected for during
data analysis. One can usually also ignore this warning when
the current time bin width is larger than the dead-time.

√ √

WARNING_DIVIDER_GREATER_ONE

In T2 mode:

The sync divider is set larger than 1. This is probably not in-
tended. The sync divider is designed primarily for high sync
rates from lasers and requires a fixed pulse rate at the sync
input. In that case you should use T3 mode. If the signal at
the sync input is from a photon detector (coincidence correla-
tion etc.) a divider > 1 will lead to unexpected results. There
are rare measurement scenarios where this condition is inten-
tional and the warning can be disabled.

In histogramming and T3 mode:

If the pulse rate at the sync input is below 82 MHz then a Syn-
cDivider >1 is not needed. The measurement may yield unne-
cessary jitter if the sync source is not very stable.

√ √ √

WARNING_DIVIDER_TOO_SMALL

The pulse rate at the sync input (after the divider) is higher
than 82 MHz. This is close to the sustainable front end speed.
Sync events will be lost above 85 MHz. To avoid this, in-
crease the sync divider.

√ √

WARNING_TIME_SPAN_TOO_SMALL

This warning is issued in histogramming and T3 mode when
the sync period (1/SyncRate) is longer that the start to stop
time span that can be covered by the histogram or by the T3
mode records. You can calculate this time span as follows:

 Span = Resolution * Length

Length is 32768 in T3 mode. In histogramming mode it
depends on the chosen histogram length (default is 65536).
Events outside this span will not be recorded. There are some
measurement scenarios where this condition is intentional
and the warning can be disabled.

√ √

WARNING_OFFSET_UNNECESSARY

This warning is issued in histogramming and T3 mode when
an offset >0 is set even though the sync period (1/SyncRate)
can be covered by the measurement time span (see
calculation above) without using an offset. The offset may
lead to events getting discarded. There are some
measurement scenarios where this condition is intentional
and the warning can be disabled.

√ √

Page 47

PicoQuant GmbH HydraHarp 500 HH500Lib Programming Library for Linux - v.1.0.0.0

WARNING_COUNTS_DROPPED

This warning is issued when the front end of the data
processing pipeline was not able to process all events that
came in. This will occur typically only at very high count rates
during intense bursts of events.

√ √ √

WARNING_USB20_SPEED_ONLY

This warning appears when the HydraHarp’s USB connection
is running only at USB 2.0 speed. For proper performance it
should be running at USB 3.0 super speed. Check the cabling
and the USB port in use. The same issue is indicated by the
USB status LED showing yellow instead of green.

√ √ √

If any of the warnings you receive indicate wrong pulse rates, the cause may be inappropriate input settings,
wrong pulse polarities, poor pulse shapes or bad connections. If in doubt, check all signals with an oscillo-
scope of sufficient bandwidth.

Page 48

All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuracies
or omissions. Specifications and external appearances are subject to change without notice.

PicoQuant GmbH
Rudower Chaussee 29 (IGZ)
12489 Berlin
Germany

P +49-(0)30-1208820-0
F +49-(0)30-1208820-90
info@picoquant.com
http://www.picoquant.com

	1. Introduction
	2. General Notes
	2.1. What’s new in this Version
	2.2. Warranty and Legal Terms
	Disclaimer
	License and Copyright Notice
	Acknowledgements

	3. Installation of the Library
	3.1. Requirements
	3.2. Device Access Permissions
	3.3. Installing the Library
	3.4. Installing the Demo Programs

	4. The Demo Applications
	4.1. Functional Overview
	Histogramming Mode Demos
	TTTR Mode Demos
	Continuous Mode Demos

	4.2. The Demo Applications by Programming Language
	The C / C++ Demos
	The Pascal/ Lazarus Demos
	The Python Demos
	The LabVIEW Demos
	The MATLAB Demos
	The Rust Demo

	5. Advanced Techniques
	5.1. Using Multiple Devices
	5.2. Efficient Data Transfer
	5.3. Instant TTTR Data Processing
	5.4. Working with Warnings
	5.5. Hardware Triggered Measurements
	5.6. Working in Continuous Mode
	5.7. Working with the External FPGA Interface
	5.8. Working with Event Filtering
	5.9. Synchronizing Devices with White Rabbit

	6. Problems, Tips & Tricks
	6.1. PC Performance Requirements
	6.2. USB Interface
	6.3. Troubleshooting
	6.4. Version tracking
	6.5. New Linux Versions
	6.6. Software Updates
	6.7. Bug Reports and Support

	7. Appendix
	7.1. Data Types
	7.2. Functions Exported by HH500Lib.so
	7.2.1. General Functions
	7.2.2. Device Related Functions
	7.2.3. Functions for Use on Initialized Devices
	7.2.4. Special Functions for Continuous Histogramming Mode
	7.2.5. Special Functions for TTTR Mode (Time Tagging)
	7.2.6. Special Functions for TTTR Mode with Event Filtering
	7.2.7. Special Functions for White Rabbit
	7.2.8. Special Functions for the External FPGA Interface

	7.3. Warnings

