Program (per 29.9.2004) 2nd European Short Course on Principles & Applications of Time-Resolved Fluorescence Spectroscopy, Berlin, November 1-5, 2004

	Part I
	Joseph R. Lakowicz: "Basic definitions and principles of fluorescence" (2h 45 min)
	 Jablonski diagram and stokes shift Basic spectral properties Excitation and emission spectral Fluorescence anisotropy Fluorescence lifetime Energy transfer
	Richard Thompson: "Instrumentation (1)" (1 h 30 min)
Monday	 Overview of steady state fluorometer construction Light sources: lamps, lasers, LEDs Wavelength selection: monochromators, filters Detectors: PMTs, PD/APD, CCD, MCP-PMT Design features Sources of error in fluorescence Introduction to lifetime measurement Introduction to time domain measurement Introduction to frequency domain measurement
	Rainer Erdmann: "Introduction to data analysis" (30 min)
	 Background and philosophy of data analysis Why do we need data correction? Nonlinear problems and data fitting Simple exponential fitting routines
	Zygmunt Gryczynski: "Introduction to Hands-on experiments" (30 min)
	Physics behind the experiments
	Jobin Yvon / Olympus / PicoQuant / PTI / Varian: "Introduction to Hands-on experiments" (15 min per company)
	Instrumental aspects of the experiments
	Joseph R. Lakowicz: "Time resolved fluorescence" (1 h 45 min)
	 Resolution of complex decays Multi-exponential anisotropy decays Transient effects in quenching Time resolved emission spectra (TRES)
	Joseph R. Lakowicz: "Time dependent phenomena" (1 h 30 min)
Tuesday	 Multi-exponential decays Time domain lifetime measurements Frequency domain measurements Quenching: static, dynamic, transients Anisotropy decays Energy transfer – distance distribution Time-dependent spectral relaxation Excited state reactions
	Richard Thompson: "Analytical applications of fluorescence" (2 h)
	 Analytical determinations by fluorescence Ratiometric determination based sensing Anisotropy-based sensing Fluorescence lifetime-based sensing Modulation based sensing Energy transfer-based lifetime sensing of metal ions Visual polarization sensing
	 First polarization sensing Error sources in fluorescence assays

	Part II		
	Michael Wahl: "Instrumentation (2) for time-correlated photon counting and fluorescence lifetime imaging" (1 h 30 min)		
	 Advantages and difficulties of the TCSPC method Modern excitation sources Specifics of sample compartments and detection optics Detectors for TCSPC Compact photon counting electronics incl. multi-photon counting Electronics for multidimensional TCPC (including routers) Electronics for Time Tagged Time Resolved (T³R) data acquisition TCSPC instrumentation for Fluorescence Lifetime Imaging (FLIM) 		
	Rainer Erdmann: "Time resolved near-infrared spectroscopy" (45 min)		
	 Principles and advantages of NIR spectroscopy Samples and probes Special instrumentation Typical applications of NIRS 		
	Stefan Hell: "Modern nonlinear fluorescence microscopy " (1 h 45 min)		
	 Prinicples of confocal microscopy Advantages of confocal microscopy 2-Photon excitation 3-Photon excitation Pulsed excitation Resolution improvement 4Pi confocal microscopy Stimulated Emission Depletion Spectroscopy (STED) 		
	Joeseph R. Lakowicz / Zygmunt Gryczynski: "1. Radiative Decay Engineering: The Use of Metallic Nano-Structures to Control Emission Properties of Fluorophores. 2. Surface Plasmon- Coupled Emission: Ultra Sensitive Fluorescence Detection Technology." (1 h 30 min)		
F	Abstracts are available at www.picoquant.com/_trfcourse.htm		
	Otto S. Wolfbeis: "Fluorescent markers, probes and labels" (1 h 45 min)		
	 Fluorescent labels Intrinsic fluorescence Labels: wavelength and decay time considerations Labeling biomolecules Purification and characterization of conjugates Specific features of protein labeling Specific features of DNA labeling Representative examples of labeling via reactive groups Quantum dots, GFP / RFP 		
	2. Fluorescent probes ■ Definitions		
	 Demittoris Probes for pH, pO₂, reactive oxygen species, Ca²⁺, Cl['], etc. Features of metal ligand probes Probes for sensing purposes 		
	 3. Applications of fluorescent probes and labeled species in microscopy and imaging in arrays and High Throughput Screening (HTS) in cellular biophysics in FRET studies in optical fiber sensors in immunoassay and hybridization assay 		
-	Jörg Enderlein: "Fluorescence fluctuation and single molecule spectroscopy" (2 h)		
	 1. Physical principles of single molecule fluorescence spectroscopy General properties of molecular light absorption and emission Fluorescence lifetime and polarization Single-pair Förster Resonance Energy Transfer (spFRET) 2. Fluorescence fluctuation spectroscopy Confocal epi-fluorescence microscopy Time-Tagged Time-Resolved photon counting Fluorescence Correlation Spectroscopy (FCS) 		
	■ Fluorescence Intensity Distribution Analysis (FIDA)		

Thursday	 3. Single Molecule Imaging Wide-field fluorescence imaging microscopy Single molecule tracking Imaging single molecule orientations Monitoring the interaction between individual molecules Stoichiometry of molecular complexes 		
	Sabato D'Auria: "Structure, stability, conformational dynamics and biotechnological applications of thermophilic enzymes" (Approx. 1 h 15 min)		
	 Effects of temperature, detergents, organic solvents on the enzyme activity / structural properties of a beta-glycosidase as monitored by circular dichroism and steady-state and time-resoved fluorescence spectroscopy Use of thermophilic proteins as probes for the development of fluorescence biosensors for analytes 		
Friday	Matthias Patting: "Advanced data analysis" (1 h 15 min)		
	 Fundamentals of TCSPC fitting Decay models Advanced error analysis Fluorescence Lifetime Imaging (FLIM) analysis Fluorescence resonance energy transfer (FRET) analysis 		
	Dr. Auer: "High throughput screening" (2 h 30 min)		
	 The drug discovery process General aspects of high throughput screening Ensemble averaging fluorescence technologies in high throughput screening Single molecule spectroscopy technologies in high throughput screening Affinity selection, chemical genomics, chemical genetics in drug discovery 		