Lecture Program - per 30th May 2006 (subject to change) 4th European Short Course on Principles & Applications of Time-Resolved Fluorescence Spectroscopy, Berlin, October 30-November 3, 2006

	Joseph R. Lakowicz: "Basic definitions and principles of fluorescence (1 and 2)"
	 (2 h 45 min, 9:30-10:45, and 11:15-12:45) Jablonski diagram and stokes shift Basic spectral properties Excitation and emission spectra Fluorescence anisotropy Fluorescence lifetime Energy transfer
	Rainer Erdmann: "Instrumentation (1)" (1 h 30 min, 13:45–15:15)
Monday	 Overview of steady state fluorometer design Light sources: lamps, LEDs, lasers Wavelength selection: monochromators, filters Detectors: PMTs, MCP-PMT, SPAD, CCD Electronics Analog and photon counting Design rules Sources of error in fluorescence Introduction to time domain measurement Introduction to frequency domain measurement Special considerations for NIR applications
	Matthias Patting : "Introduction to data analysis" (30 min, 15:45-16:15)
	 Typical approaches in Time-Correlated Single Photon Counting (TCSPC) data analysis Common artefacts and how to handle them Spoiled data and how to avoid them Choosing appropriate models Step by step example
	Zygmunt (Karol) Gryczynski / Andreas Bülter: "Introduction to Hands-on experiments" (30 min, 16:15-16:45)
	Physics behind the experiments
	Companies: "Introduction to Hands-on experiments" (15 min per company, 16:45-18:15)
	Instrumental aspects of the experiments
	Joseph R. Lakowicz: "Time-resolved fluorescence" (1 h 45 min, 8:30-10:15)
	 Resolution of complex decays Multi-exponential anisotropy decays Transient effects in quenching Time-Resolved Emission Spectra (TRES) Michael Wahl: "Instrumentation (2) for time-correlated photon counting and fluorescence
	lifetime imaging" (1 h 30 min, 10:45-12:15)
Tuesday	 Advantages and difficulties of the TCSPC method Modern excitation sources Specifics of sample compartments and detection optics Detectors for TCSPC Compact photon counting electronics incl. multi-photon counting Electronics for multidimensional TCSPC (including routers) Electronics for Time-Tagged Time Resolved (T³R) data acquisition TCSPC instrumentation for Fluorescence Lifetime Imaging (FLIM)
	Zygmunt (Karol) Gryczynski: "Analytical applications of fluorescence" (1 h 45 min, 13:30-15:15)
	 Analytical determinations by fluorescence Ratiometric determination based sensing Anisotropy-based sensing Fluorescence lifetime-based sensing Modulation based sensing Energy transfer-based lifetime sensing of metal ions Visual polarization sensing Error sources in fluorescence assays

	 Multi-exponential decays Time domain lifetime measurements
	 Time domain lifetime measurements Fraguency demain lifetime measuremente
	 Frequency domain lifetime measurements Quenching: static, dynamic, transients
	 Anisotropy decays
	 Energy transfer – distance distribution
	 Time-dependent spectral relaxation
	Excited state reactions
	Johan Hofkens: "Modern fluorescence microscopy" (1 h 30 min, 10:30-12:00)
5	1. Hardware aspects:
	■ Introduction to microscopy
	Basics of (fluorescence)-microscopy (lightpath inside a microscope, I ight collection (lenses, objectives,
Wednesday	aberration), resolution, focus properties, working distances, transmission / epi-illumination, excitation
	sources / possible detectors / general setup)
	■ Widefield microscopy
	Total Internal Reflection Fluorescence (TIRF)
	Confocal and Multi-photon microscopy
	High resolution microscopy (Stimulated Emission Depletion Spectroscopy (STED), 4-PI)
	Spinning disk microscopy
	■ Laser Scanning microscopy
	2. Applications:
	 General imaging Spectral mixing / unmixing
	■ FLIM (phase, TCSPC, gating,)
	 Förster Resonance Energy Transfer (FRET) / Imaging FRET
	 Fluorescence Correlation Spectroscopy (FCS)
	 Deconvolution microscopy
	Axel Dürkop: "Fluorescent markers, probes and labels" (1 h 30 min. 8:30-10:00)
	 Intrinsic fluorophores ■ Aromatic amino acids (Tyr, Trp, Phe)
	 Enzyme co-factors (NADH, FAD,)
	■ Tissues
	2. Extrinsic fluorophores
	 Protein probes (Fluorescein, Rhodamines, Dansyl, BodiPy,)
	 Membrane probes (DPH, TMA-DPH, Parinaric acid, Fatty acids,)
	DNA probes (Ethidium bromide, DAPI, Acridine Orange, Adenine, Guanine,)
	3. Chemical sensing probes
	■ Ion indicators (MQAE, FURA, Calcium Green,)
	Fluorogenics probes (Fluorescamine, NBD-Cl,)
	4. Fluorescent Proteins
	■ Phycobiliproteins
	■ GFP, CFP, YFP,
	5. Lanthanides
>	6. Metal-Ligand complexes
da	7. Protein sensors
้ง	8. Luminescenct nanoparticles aka Quantum Dots
i nursaay	
-	Jörg Enderlein: "Fluorescence fluctuation and single molecule spectroscopy" (1 h 30 min, 10:30-12:00)
	1. Physical principles of single molecule fluorescence spectroscopy
	 General properties of molecular light absorption and emission
	Fluorescence lifetime and polarization
	 Single-pair Förster Resonance Energy Transfer (spFRET)
	2. Fluorescence fluctuation spectroscopy
	Confocal epi-fluorescence microscopy
	Time-Tagged Time-Resolved photon counting
	 Fluorescence Correlation Spectroscopy (FCS)
	 Fluorescence Intensity Distribution Analysis (FIDA)
	Single molecule burst analysis
	3. Single Molecule Imaging
	Wide-field fluorescence imaging microscopy
	■ Single molecule tracking
	Imaging single molecule orientations
	Monitoring the interaction between individual molecules
	Stoichiometry of molecular complexes

	Martin Hof: "Solvent relaxation techniques: Application in studies of biomolecules" (1 h 30 min, 13:00-14:30)
	 Solvent relaxation (SR) and steady state spectra Time-resolved emission spectra SR in biomembrane research Protein-Membrane interactions studied by SR Lipid systems for drug delivery protocols studied by SR SR in protein and DNA research
	Matthias Patting: "Advanced data analysis" (1 h 30 min, 8:30-10:00)
dav	 Fundamentals of TCSPC fitting Decay models Advanced error analysis Fluorescence Lifetime Imaging (FLIM) analysis Förster Resonance Energy Transfer (FRET) analysis
Fri	Manfred Auer: "High throughput screening" (2 h 15 min, 10:00-10:45 and 11:15-12:45)
	 The drug discovery process General aspects of high throughput screening Ensemble averaging fluorescence technologies in high throughput screening Single molecule spectroscopy technologies in high throughput screening Affinity selection, chemical genomics, chemical genetics in drug discovery